- PII
- S3034611825030061-1
- DOI
- 10.7868/S3034611825030061
- Publication type
- Article
- Status
- Published
- Authors
- Volume/ Edition
- Volume 56 / Issue number 3
- Pages
- 97-108
- Abstract
- The review summarizes modern data concerned the molecular mechanisms of corneal endothelial cells that regulate stromal hydration necessary to preserve its optical properties. The data concerned function of the corneal endothelium is reviewed in terms of the "pump-leak" model. The studies of the mechanisms regulating endothelial cell water-electrolyte balance, which is related with cell volume regulation are presented. The role of Na/K-ATPase as an electrogenic transporter and participant in the mechanoreceptor system, including proteins of tight junctions, adhesion complexes and extracellular matrix, that take a part in control of intraocular pressure, is reviewed. Data of endothelial cells plasma membrane molecular transporters and their regulation by the osmo-sensitive factor NFAT5 in are presented. There are section where presented results of the studies concerned regulation of endothelial regeneration and modern methods of cell and tissue engineering developed as approaches to the treatment of corneal edema caused by endothelial dysfunction.
- Keywords
- роговица эндотелий трансмембранный транспорт осмотический баланс Na/K-АТФаза
- Date of publication
- 07.12.2025
- Year of publication
- 2025
- Number of purchasers
- 0
- Views
- 35
References
- 1. Батурина Г.С., Каткова Л.Е., Пальчикова И.Г. и др. митохондриальный антиоксидант SkQ1 повышает эффективность гипотермической консервации роговицы // Биохимия. 2021. Т. 86. № 3. С. 443–450. https://doi:10.31857/S032097252103012X
- 2. Кузеина И.М., Каткова Л.Е., Батурина Г.С. и др. Нарушения регуляции объема клеток эндотелия роговицы при кератоконусе // Биологические мембраны. 2024. Т. 41. № 3. С. 211–218. https://doi:10.31857/S0233475524030042
- 3. Наточин Ю.В. Физиологии почки и водносолевого гомеостаза человека: новые проблемы // Физиология человека. 2021. Т. 47. № 4. С. 103–114. https://doi.org/10.31857/S0131164621040111
- 4. Салихов И.Г., Агишева К.Н. Перекисное окисление липидов и его значение в патологии внутренних органов // Казанский медицинский журнал. 1986. Т. 67. № 3. C. 200–203. https://doi:10.17816/kazmj66785
- 5. Anney P., Charpentier P., Proulx S. Influence of Intraocular Pressure on the Expression and Activity of Sodium – Potassium Pumps in the Corneal Endothelium // Int. J. Mol. Sci. 2024. V. 25. P. 10227. https://doi.org/10.3390/ijms251810227
- 6. Araie M., Hamano K., Eguchi S. et al. Effect of calcium ion concentration on the permeability of the corneal endothelium // Invest. Ophthalmol. Vis. Sci. 1990. V. 31. № 10. P. 2191–2193.
- 7. Barry P.A., Petroll W.M., Andrews P.M. et al. The spatial organization of corneal endothelial cytoskeletal proteins and their relationship to the apical junctional complex // Investig. Ophthalmol. Vis. Sci. 1995. V. 36. P. 1115–1124.
- 8. Bazzoni G. The JAM family of junctional adhesion molecules // Curr. Opin. Cell. Biol. 2003. V. 15. № 5. P. 525–530. https://doi:10.1016/s0955-0674 (03)00104-2
- 9. Bhosale G., Sharpe J.A., Sundier S.Y. et al. Calcium signaling as a mediator of cell energy demand and a trigger to cell death // Ann. N. Y Acad. Sci. 2015. V. 1350. P. 107–116. https://doi:10.1111/nyas.12885.
- 10. Bochkov V.N., Oskolkova O.V., Birukov K.G., et al. Generation and biological activities of oxidized phospholipids // Antioxid. Redox. Signal. 2010. V. 12. № 8. P. 1009–1059. https://doi:10.1089/ars.2009.2597
- 11. Bonanno J.A. Identity and regulation of ion transport mechanisms in the corneal endothelium // Prog. Retin. Eye Res. 2003. V. 22. № 1. P. 69–94. https://doi:10.1016/s1350-9462 (02)00059-9
- 12. Bonanno J.A. Molecular Mechanisms Underlying the Corneal Endothelial Pump // Exp. Eye Res. 2012. V. 95. № 1. P. 2–7. https://doi:10.1016/j.exer.2011.06.004
- 13. Bonanno J.A., Guan Y., Jelamskii S. et al. Apical and basolateral CO-HCO– permeability in cultured bovine corneal endothelial cells // Am J. Physiol. 1999. V. 277. № 3. P. C545–53. https://doi:10.1152/ajpcell.1999.277.3.C545.
- 14. Bonanno J.A., Shyam R., Choi M. et al. The H+ Transporter SLC4A11: Roles in Metabolism, Oxidative Stress and Mitochondrial Uncoupling // Cells. 2022. V. 11. № 2. P. 197. https://doi:10.3390/cells11020197
- 15. Bourne W.M. Biology of the corneal endothelium in health and disease // Eye (Lond). 2003. V. 17. P. 912–918. https://doi:10.1038/sj.eye.6700559
- 16. Carlson K.H., Bourne W.M., McLaren J.W. et al. Variations in human corneal endothelial cell morphology and permeability to fluorescein with age // Exp. Eye Res. 1988. V. 47. P. 27–41. https://doi:10.1016/0014-4835 (88)90021-8
- 17. Casas-González P., Ruiz-Martínez A., GarcíaSáinz J.A. Lysophosphatidic acid induces alpha1B-adrenergic receptor phosphorylation through G beta gamma, phosphoinositide 3-kinase, protein kinase C and epidermal growth factor receptor transactivation // Biochim. Biophys. Acta. 2003. V. 1633. № 2. P. 75–83.
- 18. Chifflet S., Justet C., Hernández J.A. et al. Early and late calcium waves during wound healing in corneal endothelial cells // Wound. Repair. Regen. 2012. V. 20. P. 28–37. https://doi:10.1111/j.1524-475X.2011.00749.x
- 19. Chmiel T.A., Gardel M.L. Confluence and tight junction dependence of volume regulation in epithelial tissue // Mol. Biol. Cell. 2022. V. 33. № 11. ar98. https://doi:10.1091/mbc.E22-03-0073.
- 20. Contreras R.G., Torres-Carrillo A., Flores-Maldonado C. et al. Na+/K+-ATPase: More than an Electrogenic Pump // Int. J. Mol. Sci. 2024. V. 25. № 11. P. 6122. https://doi:10.3390/ijms25116122
- 21. Delpire E., Gagnon K.B. Water Homeostasis and Cell Volume Maintenance and Regulation // Curr. Top. Membr. 2018. V. 81. P. 3–52. https://doi:10.1016/bs.ctm.2018.08.001
- 22. Dolmetsch R.E., Xu K., Lewis R.S. Calcium oscillations increase the efficiency and specificity of gene expression // Nature. 1998. V. 392. P. 933–936. https://doi:10.1038/31960
- 23. Duan S., Li Y., Zhang Y. et al. The Response of Corneal Endothelial Cells to Shear Stress in an In Vitro Flow Model / J. Ophthalmol. 2021. 9217866. https://doi:10.1155/2021/9217866
- 24. Fanning A.S., Jameson B.J., Jesaitis L.A. et al. The tight junction protein ZO-1 establishes a link between the transmembrane protein occludin and the actin cytoskeleton // J. Biol. Chem. 1998. V. 273. P. 29745–29753. https://doi:10.1074/jbc.273.45.29745
- 25. Furuse M., Hata M., Furuse K. et al. Claudinbased tight junctions are crucial for the mammalian epidermal barrier: a lesson from claudin-1-deficient mice // J. Cell. Biol. 2002. V. 156. P. 1099–1111. https://doi:10.1083/jcb.200110122
- 26. Hartsock A., Nelson W.J. Adherens and tight junctions: Structure, function and connections to the actin cytoskeleton // Biochim. Biophys. Acta. 2008. V. 1778. P. 660–669. https://doi:10.1016/j.bbamem.2007.07.012
- 27. Hatou S., Sayano T., Higa K. et al. Transplantation of iPSC-derived corneal endothelial substitutes in a monkey corneal edema model // Stem. Cell. Res. 2021. V. 55. 102497. https://doi:10.1016/j.scr.2021.102497
- 28. Hatou S., Shimmura S. Advances in corneal regenerative medicine with iPS cells // Jpn. J. Ophthalmol. 2023. V. 67. № 5. P. 541–545. https://doi:10.1007/s10384-023-01015-5
- 29. Higashi T., Tokuda S., Kitajiri S. et al. Analysis of the ‘angulin’ proteins LSR, ILDR1 and ILDR2 — tricellulin recruitment, epithelial barrier function and implication in deafness pathogenesis // J. Cell. Sci. 2013. V. 126. P. 966–977. https://doi:10.1242/jcs.116442
- 30. Hogan M.J., Alvarado J.A., Weddel J.E. Histology of the Human Eye: An Atlas and Text-Book. W.B. Saunders; Philadelphia, PA, USA: 1971. p. 687.
- 31. Imafuku K., Iwata H., Natsuga K. et al. Zonula occludens-1 distribution and barrier functions are affected by epithelial proliferation and turnover rates // Cell. Prolif. 2023. V. 56. № 9. e13441. https://doi:10.1111/cpr.13441
- 32. Inagaki E., Hatou S., Higa K. et al. Skin-Derived Precursors as a Source of Progenitors for Corneal Endothelial Regeneration // Stem. Cells Transl. Med. 2017. V. 6. № 3. P. 788–798. https://doi:10.1002/sctm.16-0162
- 33. Iwabuchi S., Kawahara K., Makisaka K. et al. Photolytic flash-induced intercellular calcium waves using caged calcium ionophore in cultured astrocytes from newborn rats // Exp. Brain Res. 2002. V. 146. P. 103–116. https://doi:10.1007/s00221-002-1149-y
- 34. Johnson Z.I., Shapiro I.M., Risbud M.V. Extracellular osmolarity regulates matrix homeostasis in the intervertebral disc and articular cartilage: evolving role of TonEBP // Matrix. Biol. 2014. V. 40. P. 10–16.
- 35. Joyce N.C., Meklir B., Joyce S.J. et al. Cell cycle protein expression and proliferative status in human corneal cells // Invest. Ophthalmol. Vis. Sci. 1996. V. 37. № 4. P. 645–55.
- 36. Justet C., Hernández J.A., Chifflet S. Roles of early events in the modifications undergone by bovine corneal endothelial cells during wound healing // Mol. Cell Biochem. 2023. V. 478. P. 89–102. https://doi:10.1007/s11010-022-04495-0
- 37. Kao L., Azimov R., Shao X.M. et al. Multifunctional ion transport properties of human SLC4A11: Сomparison of the SLC4A11-B and SLC4A11-C variants // Am. J. Physiol. Cell. Physiol. 2016. V. 311. P. C. 820–C830. https://doi:10.1152/ajpcell.00233.2016
- 38. Klintworth G.K. Corneal dystrophies // Orphanet. J. Rare. Dis. 2009. V. 4. P. 7. https://doi:10.1186/1750-1172-4-7
- 39. Klyce S.D. 12. Endothelial pump and barrier function // Exp Eye Res. 2020. V. 198. 108068. https://doi:10.1016/j.exer.2020
- 40. Laing R.A., Sanstrom M.M., Berrospi A.R. et al. Changes in the corneal endothelium as a function of age // Exp. Eye. Res. 1976. V. 22. № 6. P. 587–594. https://doi:10.1016/0014-4835 (76)90003-8
- 41. Lang F., Busch G.L., Ritter M. et al. Functional significance of cell volume regulatory mechanisms // Physiol. Rev. 1998. V. 78. № 1. P. 247–306. https://doi:10.1152/physrev.1998.78.1.247
- 42. Leybaert L., Sanderson M.J. Intercellular Ca2+ waves: Mechanisms and function // Physiol. Rev. 2012. V. 92. P. 1359–1392. https://doi:10.1152/physrev.00029.2011
- 43. Lopina O.D., Fedorov D.A., Sidorenko S.V. et al. Sodium Ions as Regulators of Transcription in Mammalian Cells // Biochem. Mosc. 2022. V. 87. P. 789–799.
- 44. Maurice D.M. The location of the fluid pump in the cornea // J. Physiol. 1972. V. 221. № 1. P. 43–54. https://doi:10.1113/jphysiol.1972.sp009737
- 45. Maycock N.J., Marshall J. Genomics of corneal wound healing: a review of the literature // Acta Ophthalmol. 2014. V. 92. № 3. e170–84. https://doi:10.1111/aos.12227
- 46. Melnyk S., Bollag W.B. Aquaporins in the Cornea // Int. J. Mol. Sci. 2024. V. 25. № 7. 3748. https://doi:10.3390/ijms25073748
- 47. Mergler S., Pleyer U. The human corneal endothelium: new insights into electrophysiology and ion channels // Prog. Retin. Eye Res. 2007. V. 26. № 4. P. 359–378. https://doi:10.1016/j.preteyeres.2007.02.001
- 48. Millard C., Kaufman P.L. Aqueous humor: Secretion and dynamics // In: Tasman W.J.E., editor. Duane’s Foundations of Clinical Ophthalmology. Lippincott-Raven; Philadelphia, PA, USA: 1995.
- 49. Model M.A. Studying cell volume beyond cell volume // Curr. Top. Membr. 2021. V. 88. P. 165–188. https://doi:10.1016/bs.ctm.2021.08.001
- 50. Navel V., Malecaze J., Pereira B. et al. Oxidative and antioxidative stress markers in keratoconus: A systematic review and meta-analysis // Acta. Ophthalmol. 2021. V. 99. P. e777–e794. https://doi:10.1111/aos.14714
- 51. Nehrke K. H(OH), H(OH), H(OH): a holiday perspective. Focus on “Mouse Slc4a11 expressed in Xenopus oocytes is an ideally selective H+/ OH– conductance pathway that is stimulated by rises in intracellular and extracellular pH” // Am. J. Physiol. Cell. Physiol. 2016. V. 311. № 6. P. C942–C944. https://doi:10.1152/ajpcell.00309.2016
- 52. Nielsen N.V., Eriksen J.S., Olsen T. Corneal edema as a result of ischemic endothelial damage: a case report // Ann. Ophthalmol. 1982. V. 14. № 3. P. 276–278.
- 53. Kang E.Y., Liu P.K., Wen Y.T. et al. Role of Oxidative Stress in Ocular Diseases Associated with Retinal Ganglion Cells Degeneration // Antioxidants. 2021. V. 10. P. 1948. https://doi:10.3390/antiox10121948
- 54. Ng X.Y., Peh G.S.L., Yam G.H. et al. Corneal Endothelial-like Cells Derived from Induced Pluripotent Stem Cells for Cell Therapy // Int. J. Mol. Sci. 2023. V. 24. № 15. 12433. https://doi:10.3390/ijms241512433.
- 55. Ogando D.G., Bonanno J.A. RNA sequencing uncovers alterations in corneal endothelial metabolism, pump and barrier functions of Slc4a11 KO mice // Exp. Eye Res. 2022. V. 214. 108884. https://doi:10.1016/j.exer.2021.108884
- 56. Ogando D.G., Choi M., Shyam R. et al. Ammonia sensitive SLC4A11 mitochondrial uncoupling reduces glutamine induced oxidative stress // Redox. Biol. 2019. V. 26. 101260. https://doi:10.1016/j.redox.2019.101260
- 57. Ogando D.G., Kim E.T., Li S. et al. Corneal Edema in Inducible Slc4a11 Knockout Is Initiated by Mitochondrial Superoxide Induced Src Kinase Activation // Cells. 2023. V. 12. № 11. 1528. https://doi:10.3390/cells12111528
- 58. Okumura N., Sakamoto Y., Fujii K. et al. Rho kinase inhibitor enables cell-based therapy for corneal endothelial dysfunction // Sci. Rep. 2016. V. 6. 26113. https://doi:10.1038/srep26113
- 59. Otani T., Furuse M. Tight Junction Structure and Function Revisited // Trends Cell. Biol. 2020. V. 30. № 10. P. 805–817. https://doi:10.1016/j.tcb.2020.08.004
- 60. Paemeleire K., Martin P.E., Coleman S.L. et al. Intercellular calcium waves in HeLa cells expressing GFP-labeled connexin 43, 32, or 26 // Mol. Biol. Cell. 2000. V. 11. P. 1815–1827.
- 61. Peh G.S., Beuerman R.W., Colman A. et al. Human corneal endothelial cell expansion for corneal endothelium transplantation: An overview // Transplantation. 2011. V. 91. P. 811–819. https://doi:10.1097/TP.0b013e3182111f01
- 62. Poulsen J.H., Fischer H., Illek B. et al. Bicarbonate conductance and ph regulatory capability of cystic fibrosis transmembrane conductance regulator // Proc Natl Acad Sci USA. 1994. V. 91. № 12. P. 5340-4. https://doi:10.1073/pnas.91.12.5340
- 63. Price M.O., Mehta J.S., Jurkunas U.V. Corneal endothelial dysfunction: Evolving understanding and treatment options // Prog. Retin. Eye Res. 2021. V. 82. 100904. https://doi:10.1016/j.preteyeres.2020.100904
- 64. Ramachandran C., Srinivas S.P. Formation and disassembly of adherens and tight junctions in the corneal endothelium: Regulation by actomyosin contraction // Investig. Ophthalmol. Vis. Sci. 2010. V. 51. P. 2139–2148. https://doi:10.1167/iovs.09-4421
- 65. Riley M.V., Winkler B.S., Peters M.I. et al. Relationship between fluid transport and in situ inhibition of Na(+)-K+ adenosine triphosphatase in corneal endothelium // Invest. Ophthalmol. Vis. Sci. 1994. V. 35. № 2. P. 560–567.
- 66. Riley M.V., Winkler B.S., Starnes C.A. et al. Regulation of corneal endothelial barrier function by adenosine, cyclic AMP, and protein kinases // Invest. Ophthalmol. Vis. Sci. 1998. V. 39. № 11. P. 2076–2084.
- 67. Ruiz-Martínez A., Vázquez-Juárez E., Ramos-Mandujano G. et al. Permissive effect of EGFR-activated pathways on RVI and their anti-apoptotic effect in hypertonicity-exposed mIMCD3 cells // Biosci. Rep. 2011. V. 31. № 6. P. 489–97. https://doi:10.1042/BSR20110024
- 68. Saccà S.C., Cutolo C.A., Ferrari D., Corazza P., Traverso C.E. The Eye, Oxidative Damage and Polyunsaturated Fatty Acids // Nutrients. 2018. V. 10. P. 668. https://doi:10.3390/nu10060668
- 69. Sies H., Berndt C., Jones D.P. Oxidative Stress // Annu. Rev. Biochem. 2017. V. 86. P. 715–748. https://doi:10.1146/annurev-biochem-061516-045037
- 70. Shankardas J., Patil R.V., Vishwanatha J.K. Effect of down-regulation of aquaporins in human corneal endothelial and epithelial cell lines // Mol. Vis. 2010. V. 16. P. 1538–48.
- 71. Skou J.C., Esmann M. The Na, K-ATPase // J. Bioenerg. Biomembr. 1992. V. 24. P. 249–261. https://doi:10.1007/BF00768846
- 72. So S., Park Y., Kang S.S. et al. Therapeutic P ote nc y of Induc ed Plurip ote nt Stem-Cell-Derived Corneal Endothelial-like Cells for Corneal Endothelial Dysfunction // Int. J. Mol. Sci. 2022. V. 24. № 1. P. 701. https://doi:10.3390/ijms24010701
- 73. Stern M.E., Edelhauser H.F., Pederson H.J. et al. Effects of ionophores X537a and A23187 and calcium-free medium on corneal endothelial morphology // Investig. Ophthalmol. Vis. Sci. 1981. V. 20. P. 497–508.
- 74. Tajima K., Okada M., Kudo R. et al. Primary cell culture of canine corneal endothelial cells // Vet. Ophthalmol. 2021. V. 24. № 5. P. 447–454. https://doi:10.1111/vop.12924
- 75. Tratnig-Frankl M., Luft N., Magistro G. et al. Hepatocyte Growth Factor Modulates Corneal Endothelial Wound Healing In Vitro // Int. J. Mol. Sci. 2024. V. 2. P. 9382. https://doi.org/10.3390/ijms25179382
- 76. Turner J.R. ‘Putting the squeeze’ on the tight junction: Understanding cytoskeletal regulation // Semin. Cell Dev. Biol. 2000. V. 11. P. 301–308. https://doi:10.1006/scdb.2000.0180
- 77. Van den Bogerd B., Dhubhghaill S.N., Koppen C. et al. A review of the evidence for in vivo corneal endothelial regeneration // Surv. Ophthalmol. 2018. V. 63. № 2. P. 149–165. https://doi:10.1016/j.survophthal.2017.07.004
- 78. Vercammen H., Miron A., Oellerich S. et al. Corneal endothelial wound healing: understanding the regenerative capacity of the innermost layer of the cornea // Transl. Res. 2022. V. 248. P. 111–127. https://doi:10.1016/j.trsl.2022.05.003
- 79. Verkman A.S. Role of aquaporin water channels in eye function // Exp. Eye. Res. 2003. V. 76. № 2. P. 137–43. https://doi:10.1016/s0014-4835 (02)00303-2
- 80. Verkman A.S., Ruiz-Ederra J., Levin M.H. Functions of aquaporins in the eye // Prog. Retin. Eye. Res. 2008. V. 27. № 4. P. 420–33. https://doi.org/10.1016/j.preteyeres.2008.04.001.
- 81. Vallabh N.A., Romano V., Willoughby C.E. Mitochondrial dysfunction and oxidative stress in corneal disease // Mitochondrion. 2017. V. 36. P. 103–113. https://doi:10.1016/j.mito.2017.05.009.
- 82. Vij N., Sharma A., Thakkar M. et al. PDGFdriven proliferation, migration, and IL8 chemokine secretion in human corneal fibroblasts involve JAK2-STAT3 signaling pathway // Mol. Vis. 2008. V. 14. P. 1020–1027.
- 83. Whitcher J.P., Srinivasan M., Upadhyay M.P. Corneal blindness: a global perspective // Bull. W. H. O. 2001. V. 79. P. 214–221.
- 84. Wilson S.E., Mohan R.R., Mohan R.R. et al. The corneal wound healing response: Cytokinemediated interaction of the epithelium, stroma, and inflammatory cells // Prog. Retin. Eye Res. 2001. V. 20. P. 625–637. https://doi:10.1016/s1350-9462 (01)00008-8
- 85. Wong E.N., Mehta J.S. Cell therapy in corneal endothelial disease // Curr. Opin. Ophthalmol. 2022. V. 33. № 4. P. 275–281. https:// doi: 10.1097/ICU.0000000000000853
- 86. Woo S.K., Lee S.D., Kwon H.M. TonEBP transcriptional activator in the cellular response to increased osmolality // Pflugers. Arch. 2002. V. 444. № 5. P. 579–585. https://doi:10.1007/s00424-002-0849-2
- 87. Zarogiannis S.G., Ilyaskin A.V., Baturina G.S. et al. Regulatory volume decrease of rat kidney principal cells after successive hypo-osmotic shocks // Math. Biosci. 2013. V. 244. № 2. P. 176–87. https://doi:10.1016/j.mbs.2013.05.007
- 88. Zhao E., Gao K., Xiong J. et al. The roles of FXYD family members in ovarian cancer: an integrated analysis by mining TCGA and GEO databases and functional validations // J. Cancer Res. Clin. Oncol. 2023. V. 149. P. 17269–17284. https://doi:10.1007/s00432-023-05445-z
- 89. Zihni C., Mills C., Matter K. et al. Tight junctions: From simple barriers to multifunctional molecular gates // Nat. Rev. Mol. Cell. Biol. 2026. V. 17. P. 564–580. https://doi:10.1038/nrm.2016.80
- 90. Zinfiou C., Rochette P.J. Ultraviolet A-induced oxidation in cornea: Characterization of the early oxidation-related events // Free Radic. Biol. Med. 2017. V. 108. P. 118–128. https://doi:10.1016/j.freeradbiomed.2017.03.022.