- Код статьи
- S3034611825030051-1
- DOI
- 10.7868/S3034611825030051
- Тип публикации
- Статья
- Статус публикации
- Опубликовано
- Авторы
- Том/ Выпуск
- Том 56 / Номер выпуска 3
- Страницы
- 80-96
- Аннотация
- В связи с развитием медицины и повышением уровня жизни в мире возрастает доля пожилого населения, в связи с этим становится актуальным изучение механизмов возрастных изменений когнитивных функций. Цель настоящего обзора – анализ данных литературы о механизмах возрастных изменений когнитивных функций и оценка перспективы развития ключевых направлений исследований в данной области науки. В обзоре приведены современные теории когнитивного старения (теория резерва, компенсаторная теория, теория старения лобных долей, теория дефицита торможений, теория сенсорной депривации). Назрела необходимость объединить данные отдельных разрозненных исследований молекулярных механизмов старения, отражающих роль ряда генов, нейрографических факторов, тандемных повторов ДНК в обеспечении когнитивных функций в пожилом возрасте. Понимание механизмов когнитивного старения на разных уровнях организма может способствовать разработке эффективных методов профилактики и терапии когнитивных нарушений.
- Ключевые слова
- когнитивные функции старениe гены нейроны тандемные повторы ДНК
- Дата публикации
- 07.12.2025
- Год выхода
- 2025
- Всего подписок
- 0
- Всего просмотров
- 33
Библиография
- 1. Величковский Б.М., Боринская С.А., Вартанов А.В. и др. Нейрокогнитивные особенности носителей аллеля ε4 гена аполипопротеина Е (APOE) // теоретическая и экспериментальная психология. 2009. т. 2. № 4. С. 25–37.
- 2. Мошетова Л.К., Абрамова О.И., Туркина К.И. и др. От клеточного старения до возрастной макулярной дегенерации: роль теломер // рМЖ. Клиническая офтальмология. 2020. т. 20. № 3. С. 148–151. https://doi.org/10.32364/2311-7729-2020-20-3-148-151
- 3. Павлов К.И., Мухин В.Н., Клименко В.М., Анисимов В.Н. Система теломера-теломераза и психические процессы при старении, в норме и патологии (обзор литературы) // Успехи геронтологии. 2017. т. 30. № 1. С. 17–26.
- 4. Разумникова О.М. Закономерности старения мозга и способы активации его компенсаторных ресурсов // Успехи физиол. наук. 2015. т. 46. № 2. С. 3–16.
- 5. Третьякова В.Д. Возрастные изменения в мозге и факторы влияющие на них // Бюллетень науки и практики. 2022. V. 8. № https://doi.org/10.33619/2414-2948/80/20
- 6. Третьякова В.Д., Пульцина К.И. Старение мозга: ключевые теории и нейрофизиологические инсайты // Клиническая и специальная психология. 2024. т. 13. № 4. С. 5–28. doi: 10.17759/cpse.2024130401
- 7. Чердак М.А. Механизмы нейрокогнитивной адаптации при старении // Проблемы геронауки. 2023. № 2. С. 94–101. https://doi.org/10.37586/2949-4745-2-2023-94-101
- 8. Широкова И.В. Исторические аспекты становления понятия «Исполнительные функции». Обзор иностранных источников // Комплексные исследования детства. 2022. т. 4. № 4. С. 333–336. https://orcid.org/0000-0003-1556-5584
- 9. Amano H., Chaudhury A., Rodriguez-Aguayo C. et al. Telomere dysfunction induces sirtuin repression that drives telomere-dependent disease // Cell metabolism. 2019. V. 29. № 6. P. 1274–1290. e9. https://doi.org/10.1016/j.cmet.2019.03.001
- 10. Andrews M.G., Subramanian L., Kriegstein A.R. mTOR signaling regulates the morphology and migration of outer radial glia in developing human cortex // Elife. 2020. V. 9. P. e58737. https://doi.org/10.7554/eLife.58737
- 11. Anthony M., Lin F. A systematic review for functional neuroimaging studies of cognitive reserve across the cognitive aging spectrum // Archives of Clinical Neuropsychology. 2018. V. 33. № 8. P. 937–948. https://doi.org/10.1093/arclin/acx125
- 12. Arce Rentería M., Vonk J.M., Felix G. et al. Illiteracy, dementia risk, and cognitive trajectories among older adults with low education // Neurology. 2019. V. 93. № 24. P. e2247–e2256. https://doi.org/10.1212/WNL.0000000000008587
- 13. Baker D., Childs B., Durik M. et al. Naturally occurring p16Ink4a-positive cells shorten healthy lifespan // Nature. 2016. V. 530. № 7589. P. 184–189. https://doi.org/10.1038/nature16932
- 14. Baker D., Wijshake T., Tchkonia T. et al. Clearance of p16Ink4a-positive senescent cells delays ageing-associated disorders // Nature. 2011. V. 479. № 7372. P. 232–236. https://doi.org/10.1038/nature10600
- 15. Bektas A., Schurman S.H., Sen R., Ferrucci L. Aging, inflammation and the environment // Experimental gerontology. 2018. V. 105. P. 10–18. https://doi.org/10.1016/j.exger.2017.12.015
- 16. Berchtold N.C., Coleman P.D., Cribbs D.H. et al. Synaptic genes are extensively downregulated across multiple brain regions in normal human aging and Alzheimer's disease // Neurobiology of aging. 2013. V. 34. № 6. P. 1653–1661. https://doi.org/10.1016/j.neurobiolaging.2012.11.024
- 17. Birch J., Gil J. Senescence and the SASP: Many therapeutic avenues // Genes & development. 2020. V. 34. № 23–24. P. 1565–1576. https://doi.org/10.1101/gad.343129.120
- 18. Budni J., Bellettini-Santos T., Mina F. et al. The involvement of BDNF, NGF and GDNF in aging and Alzheimer’s disease // Aging and disease. 2015. V. 6. № 5. P. 331. https://doi.org/10.14336/AD.2015.0825
- 19. Cabeza R., Albert M., Belleville S. et al. Cognitive neuroscience of healthy aging: Maintenance, reserve, and compensation // Nature Reviews. Neuroscience. 2018. V. 19. № 11. P. 701. https://doi.org/10.1038/s41583-018-0068-2
- 20. Campbell K.L., Lustig C., Hasher L. Aging and inhibition: Introduction to the special issue // Psychology and Aging. 2020. V. 35. № 5. P. 605. https://doi.org/10.1037/pag0000564
- 21. Castro-Pérez E., Emilio Soto-Soto E., Marizabeth Pérez-Carambot M. et al. Identification and characterization of the V (D) J recombination activating gene 1 in long-term memory of context fear conditioning // Neural Plasticity. 2016. V. 2016. 1752176 https://doi.org/10.1155/2016/1752176
- 22. Cherbuin N., Kim S., Anstey K.J. Dementia risk estimates associated with measures of depression: A systematic review and meta-analysis // BMJ Open. 2015. V. 5. № 12. P. e008853. https://doi.org/10.1136/bmjopen-2015-008853
- 23. Cohen-Manheim I., Doniger G.M., Sinnreich R. et al. Increased attrition of leukocyte telomere length in young adults is associated with poorer cognitive function in midlife // European journal of epidemiology. 2016. V. 31. P. 147–157. https://doi.org/10.1007/s10654-015-0051-4
- 24. Crowe S.L., Movsesyan V.A., Jorgensen T.J., Kondratyev A. Rapid phosphorylation of histone H2A. X following ionotropic glutamate receptor activation // European Journal of Neuroscience. 2006. V. 23. № 9. P. 2351–2361. https://doi.org/10.1111/j.1460-9568.2006.04768.x
- 25. Daniele S., Giacomelli C., Martini C. Brain ageing and neurodegenerative disease: The role of cellular waste management // Biochemical pharmacology. 2018. V. 158. P. 207–216. https://doi.org/10.1016/j.bcp.2018.10.030
- 26. de Jager P.L., Srivastava G., Lunnon K. et al. Alzheimer's disease: Early alterations in brain DNA methylation at ANK1, BIN1, RHBDF2 and other loci // Nature neuroscience. 2014. V. 17. № 9. P. 1156–1163. https://doi.org/10.1038/nn.3786
- 27. De Lucia C., Murphy T., Steves C.J. et al. Lifestyle mediates the role of nutrient-sensing pathways in cognitive aging: Cellular and epidemiological evidence // Communications Biology. 2020. V. 3. № 1. P. 157. https://doi.org/10.1038/s42003-020-0844-1
- 28. Emrani S., Arain H.A., DeMarshall C., Nuriel T. APOE4 is associated with cognitive and pathological heterogeneity in patients with Alzheimer’s disease: A systematic review // Alzheimer's research & therapy. 2020. V. 12. № 1. P. 141. https://doi.org/10.1186/s13195-020-00712-4
- 29. Ferguson H.J., Brunsdon V.E.A., Bradford E.E.F. The developmental trajectories of executive function from adolescence to old age // Scientific reports. 2021. V. 11. № 1. P. 1382. https://doi.org/10.1038/s41598-020-80866-1
- 30. Fischer M.E., Cruickshanks K.J., Schubert C.R. et al. Age‐related sensory impairments and risk of cognitive impairment // Journal of the American Geriatrics Society. 2016. т. 64. № 10. P. 1981–1987. https://doi.org/10.1111/jgs.14308
- 31. Gaspar-Silva F., Trigo D., Magalhaes J. Ageing in the brain: Mechanisms and rejuvenating strategies // Cellular and Molecular Life Sciences. 2023. V. 80. № 7. P. 1–21. https://doi.org/10.1007/s00018-023-04832-6
- 32. Geerligs L., Saliasi E., Maurits N.M. et al. Brain mechanisms underlying the effects of aging on different aspects of selective attention // NeuroImage. 2014. V. 91. P. 52–62. https://doi.org/10.1016/j.neuroimage.2014.01.029
- 33. Gollihue J.L., Norris C.M. Astrocyte mitochondria: Central players and potential therapeutic targets for neurodegenerative diseases and injury // Ageing research reviews. 2020. V. 59. P. 101039. https://doi.org/10.1016/j.arr.2020.101039
- 34. Guo J., Huang X., Dou L. et al. Aging and aging-related diseases: From molecular mechanisms to interventions and treatments // Signal Transduction and Targeted Therapy. 2022. V. 7. № 1. P. 391. https://doi.org/10.1038/s41392-022-01251-0
- 35. Han B., Chen H., Yao Y. et al. Genetic and non-genetic factors associated with the phenotype of exceptional longevity & normal cognition // Scientific Reports. 2020. V. 10. № 1. P. 19140. https://doi.org/10.1038/s41598-020-75446-2
- 36. Han R., Liang J., Zhou B. Glucose metabolic dysfunction in neurodegenerative diseases — new mechanistic insights and the potential of hypoxia as a prospective therapy targeting metabolic reprogramming // International Journal of Molecular Sciences. 2021. V. 22. № 11. P. 5887. https://doi.org/10.3390/ijms22115887
- 37. Hardcastle C., O’Shea A., Kraft J.N. et al. Contributions of hippocampal volume to cognition in healthy older adults // Frontiers in aging neuroscience. 2020. V. 12. P. 593833. https://doi.org/10.3389/fnagi.2020.593833
- 38. Hartshorne J.K., Germine L.T. When does cognitive functioning peak? The asynchronous rise and fall of different cognitive abilities across the life span // Psychological science. 2015. V. 26. № 4. P. 433–443. https://doi.org/10.1177/0956797614567339
- 39. Hou Y., Dan X., Babbar M. et al. Ageing as a risk factor for neurodegenerative disease // Nature Reviews Neurology. 2019. V. 15. № 10. P. 565–581. https://doi.org/10.1038/s41582-019-0244-7
- 40. Jucker M. The benefits and limitations of animal models for translational research in neurodegenerative diseases // Nature medicine. 2010. V. 16. № 11. P. 1210–1214. https://doi.org/10.1038/nm.2224
- 41. Kalpouzos G., Rizzuto D., Keller L. et al. Telomerase gene (hTERT) and survival: results from two Swedish cohorts of older adults // Journals of Gerontology Series A: Biomedical Sciences and Medical Sciences. 2016. V. 71. № 2. P. 188–195. https://doi.org/10.1093/gerona/glu222
- 42. Kase Y., Shimazaki T., Okano H. Current understanding of adult neurogenesis in the mammalian brain: How does adult neurogenesis decrease with age? // Inflammation and regeneration. 2020. V. 40. P. 1–6. https://doi.org/10.1186/s41232-020-00122-x
- 43. Kepchia D., Huang L., Dargusch R. et al. Diverse proteins aggregate in mild cognitive impairment and Alzheimer’s disease brain // Alzheimer's research & therapy. 2020. V. 12. № 1. P. 1–20. https://doi.org/10.1186/s13195-020-00641-2
- 44. Kirova A.M., Bays R.B., Lagalwar S. Working memory and executive function decline across normal aging, mild cognitive impairment, and Alzheimer’s disease // BioMed research international. 2015. V. 2015. № 1. P. 748212. https://doi.org/10.1155/2015/748212
- 45. Konopka A., Atkin J.D. The role of DNA damage in neural plasticity in physiology and neurodegeneration // Frontiers in Cellular Neuroscience. 2022. V. 16. P. 836885. https://doi.org/10.3389/fncel.2022.836885
- 46. Leong R.L.F., Lo J.C., Sim S.K.Y. et al. Longitudinal brain structure and cognitive changes over 8 years in an East Asian cohort // Neuroimage. 2017. V. 147. P. 852–860. https://doi.org/10.1016/j.neuroimage.2016.10.016
- 47. Li H., Hirano S., Furukawa S. et al. The relationship between the striatal dopaminergic neuronal and cognitive function with aging // Frontiers in aging neuroscience. 2020. V. 12. P. 41. https://doi.org/10.3389/fnagi.2020.00041
- 48. Liguori I., Russo G., Curcio F. et al. Oxidative stress, aging, and diseases // Clinical interventions in aging. 2018. P. 757–772. https://doi.org/10.2147/CIA.S158513
- 49. López-Otín C., Blasco M.A., Partridge L., Serrano M. The hallmarks of aging // Cell. 2013. V. 153. № 6. P. 1194–1217. https://doi.org/10.1016/j.cell.2013.05.039
- 50. Lunnon K., Smith R., Hannon E. et al. Methylomic profiling implicates cortical deregulation of ANK1 in Alzheimer's disease // Nature neuroscience. 2014. V. 17. № 9. P. 1164–1170. https://doi.org/10.1038/nn.3782
- 51. Ma A., Dai X. The relationship between DNA single-stranded damage response and doublestranded damage response // Cell Cycle. 2018. V. 17. № 1. P. 73–79. https://doi.org/10.1080/15384101.2017.1403681
- 52. Ma S.L., Lau E.S.S., Suen E.W.C. et al. Telomere length and cognitive function in southern Chinese community-dwelling male elders // Age and ageing. 2013. V. 42. № 4. P. 450–455. https://doi.org/10.1093/ageing/aft036
- 53. Maharani A., Pendleton N., Leroi I. Hearing impairment, loneliness, social isolation, and cognitive function: Longitudinal analysis using English longitudinal study on ageing // The American Journal of Geriatric Psychiatry. 2019. V. 27. № 12. P. 1348–1356. https://doi.org/10.1016/j.jagp.2019.07.010
- 54. McGrattan A.M., McGuinness B., McKinley M.C. et al. Diet and inflammation in cognitive ageing and Alzheimer’s disease // Current nutrition reports. 2019. V. 8. P. 53–65. https://doi.org/10.1007/s13668-019-0271-4
- 55. McKinnon P.J. Topoisomerases and the regulation of neural function // Nature Reviews Neuroscience. 2016. V. 17. № 11. P. 673–679. https://doi.org/10.1038/nrn.2016.101
- 56. Möller C., Hafkemeijer A., Pijnenburg Y.A.L. et al. Different patterns of cortical gray matter loss over time in behavioral variant frontotemporal dementia and Alzheimer's disease // Neurobiology of aging. 2016. V. 38. P. 21–31. https://doi.org/10.1016/j. neurobiolaging.2015.10.020
- 57. Murman D.L. The impact of age on cognition // Seminars in hearing. Thieme Medical Publishers. 2015. V. 36. № 03. P. 111–121. https://doi.org/10.1055/s-0035-1555115
- 58. Negredo P.N., Yeo R.W., Brunet A. Aging and rejuvenation of neural stem cells and their niches // Cell stem cell. 2020. V. 27. № 2. P. 202–223. https://doi.org/10.1016/j.stem.2020.07.002
- 59. Nettiksimmons J., Ayonayon H., Harris T. et al. Development and validation of risk index for cognitive decline using blood-derived markers // Neurology. 2015. V. 84. № 7. P. 696–702. https://doi.org/10.1212/WNL.0000000000001263
- 60. Oosterhuis E.J., Slade K., May P.J.C. et al. Toward an understanding of healthy cognitive aging: The importance of lifestyle in cognitive reserve and the scaffolding theory of aging and cognition // The Journals of Gerontology: Series B. 2023. V. 78. № 5. P. 777–788. https://doi.org/10.1093/geronb/gbac197
- 61. Park D.C., Festini S.B. Theories of memory and aging: A look at the past and a glimpse of the future // Journals of Gerontology Series B: Psychological Sciences and Social Sciences. 2017. V. 72. № 1. P. 82–90. https://doi.org/10.1093/geronb/gbw066
- 62. Pettigrew C., Soldan A. Defining cognitive reserve and implications for cognitive aging // Current neurology and neuroscience reports. 2019. V. 19. P. 1–12. https://doi.org/10.1007/s11910-019-0917-z
- 63. Pietzuch M., King A.E., Ward D.D., Vickers J.C. The influence of genetic factors and cognitive reserve on structural and functional resting-state brain networks in aging and Alzheimer’s disease // Frontiers in aging neuroscience. 2019. V. 11. P. 30. https://doi.org/10.3389/fnagi.2019.00030
- 64. Polidori M.C. Embracing complexity of (brain) aging // FEBS letters. 2024. V. 598. № 17. P. 2067–2073. https://doi.org/10.1002/1873-3468.14941
- 65. Porokhovnik L.N., Veiko N.N., Ershova E.S., Kostyuk S.V. The role of human satellite III (1q12) copy number variation in the adaptive response during aging, stress, and pathology: a pendulum model // Genes. 2021. V. 12. № 10. P. 1524. https://doi.org/10.3390/genes12101524
- 66. Réus G.Z., Abaleira H.M., Michels M. et al. Anxious phenotypes plus environmental stressors are related to brain DNA damage and changes in NMDA receptor subunits and glutamate uptake // Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis. 2015. V. 772. P. 30–37. https://doi.org/10.1016/j.mrfmmm.2014.12.005
- 67. Reuter-Lorenz P.A., Park D.C. Cognitive aging and the life course: A new look at the scaffolding theory // Current Opinion in Psychology. 2023. P. 101781. https://doi.org/10.1016/j.copsyc.2023.101781
- 68. Rossiello F., Jurk D., Passos J.F. et al. Telomere dysfunction in ageing and age-related diseases // Nature cell biology. 2022. V. 24. № 2. P. 135–147. https://doi.org/10.1038/s41556-022-00842-x
- 69. Ruthruff E., Lien M.C. Aging and attention // Encyclopedia of geropsychology. 2016. P. 1–7. https://doi.org/10.1007/978-981-287-0803_227-1
- 70. Sakata K., Duke S.M. Lack of BDNF expression through promoter IV disturbs expression of monoamine genes in the frontal cortex and hippocampus // Neuroscience. 2014. V. 260. P. 265–275. https://doi.org/10.1016/j. neuroscience.2013.12.013
- 71. Sakata K., Overacre A.E. Promoter IV‐BDNF deficiency disturbs cholinergic gene expression of CHRNA 5, CHRM 2, and CHRM 5: Effects of drug and environmental treatments // Journal of neurochemistry. 2017. V. 143. № 1. P. 49–64. https://doi.org/10.1111/jnc.14129
- 72. Salthouse T. A. Selective review of cognitive aging // Journal of the International neuropsychological Society. 2010. V. 16. № 5. P. 754–760. https://doi.org/10.1017/S1355617710000706
- 73. Salthouse T.A. The processing-speed theory of adult age differences in cognition // Psychological review. 1996. V. 103. № 3. P. 403. https://doi.org/10.1037/0033-295X.103.3.403
- 74. Sanchez-Mut J.V., Heyn H., Vida E. et al. Human DNA methylomes of neurodegenerative diseases show common epigenomic patterns // Translational psychiatry. 2016. V. 6. № 1. P. e718–e718. https://doi.org/10.1038/tp.2015.214
- 75. Saxton R.A., Sabatini D.M. mTOR signaling in growth, metabolism, and disease // Cell. 2017. V. 168. № 6. P. 960–976. https://doi.org/10.1016/j.cell.2017.02.004
- 76. Shay J.W., Wright W.E. Telomeres and telomerase: three decades of progress // Nature Reviews Genetics. 2019. V. 20. № 5. P. 299–309. https://doi.org/10.1038/s41576-019-0099-1
- 77. Sikora E., Bielak-Zmijewska A., Dudkowska M. et al. Cellular senescence in brain aging // Frontiers in Aging Neuroscience. 2021. V. 13. P. 646924. https://doi.org/10.3389/fnagi.2021.646924
- 78. Soto-Palma C., Niedernhofer L.J., Faulk C.D., Dong X. Epigenetics, DNA damage, and aging // The Journal of clinical investigation. 2022. V. 132. № 16. https://doi.org/10.1172/JCI158446.
- 79. Stern Y., Barnes C.A., Grady C. et al. Brain reserve, cognitive reserve, compensation, and maintenance: Operationalization, validity, and mechanisms of cognitive resilience // Neurobiology of aging. 2019. V. 83. P. 124–129. https://doi.org/10.1016/j. neurobiolaging.2019.03.022
- 80. Stott R.T., Kritsky O., Tsai L.H. Profiling DNA break sites and transcriptional changes in response to contextual fear learning // PLoS One. 2021. V. 16. № 7. P. e0249691. https://doi.org/10.1371/journal.pone.0249691
- 81. Swerdlow R.H. The mitochondrial hypothesis: Dysfunction, bioenergetic defects, and the metabolic link to Alzheimer's disease // International review of neurobiology. 2020. V. 154. P. 207–233. https://doi.org/10.1016/bs.irn.2020.01.008
- 82. Trigo D., Nadais A., Carvalho A. et al. Mitochondria dysfunction and impaired response to oxidative stress promotes proteostasis disruption in aged human cells // Mitochondrion. 2023. V. 69. P. 1–9. https://doi.org/10.1016/j.mito.2022.10.002
- 83. Tripp A., Oh H., Guilloux J. P. et al. Brain-derived neurotrophic factor signaling and subgenual anterior cingulate cortex dysfunction in major depressive disorder // American Journal of Psychiatry. 2012. V. 169. № 11. P. 1194–1202. https://doi.org/10.1176/appi.ajp.2012.12020248
- 84. Uyeda A., Onishi K., Hirayama T. et al. Suppression of DNA double-strand break formation by DNA polymerase β in active DNA demethylation is required for development of hippocampal pyramidal neurons // Journal of Neuroscience. 2020. V. 40. № 47. P. 9012–9027. https://doi.org/10.1523/ JNEUROSCI.0319-20.2020
- 85. Veiko N.N., Ershova E.S., Veiko R.V., Umriukhin P. E. et al. Mild cognitive impairment is associated with low copy number of ribosomal genes in the genomes of elderly people // Frontiers in genetics. 2022. V. 13. P. 967448. https://doi.org/10.3389/fgene.2022.967448
- 86. Verhaeghen P. Aging and executive control: Reports of a demise greatly exaggerated // Current Directions in Psychological Science. 2011. V. 20. № 3. P. 174–180. https://doi.org/10.1177/0963721411408772
- 87. Verkhratsky A., Zorec R. Neuroglia in cognitive reserve // Molecular Psychiatry. 2024. P. 1–6. https://doi.org/10.1038/s41380-024-02644-z
- 88. Wang Y., Du Y., Li J., Qiu C. Lifespan intellectual factors, genetic susceptibility, and cognitive phenotypes in aging: Implications for interventions // Frontiers in Aging Neuroscience. 2019. V. 11. P. 129. https://doi.org/10.3389/fnagi.2019.00129
- 89. Welch G., Tsai L.H. Mechanisms of DNA damage‐mediated neurotoxicity in neurodegenerative disease // EMBO reports. 2022. V. 23. № 6. P. e54217. https://doi.org/10.15252/embr.202154217
- 90. Welty S., Teng Y., Liang Z. et al. RAD52 is required for RNA-templated recombination repair in post-mitotic neurons // Journal of Biological Chemistry. 2018. V. 293. № 4. P. 1353–1362. https://doi.org/10.1074/jbc.M117.808402
- 91. Yu H., Su Y., Shin J. et al. Tet3 regulates synaptic transmission and homeostatic plasticity via DNA oxidation and repair // Nature neuroscience. 2015. V. 18. № 6. P. 836–843. https://doi.org/10.1038/nn.4008
- 92. Zanto T.P., Gazzaley A. Aging of the frontal lobe // Handbook of clinical neurology. 2019. V. 163. P. 369–389. https://doi.org/10.1016/B978-0-12-804281-6.00020-3
- 93. Zhang W., Chen Y., Yang X. et al. Functional haplotypes of the hTERT gene, leukocyte telomere length shortening, and the risk of peripheral arterial disease // PLoS One. 2012. V. 7. № 10. P. e47029 https://doi.org/10.1371/journal.pone.0047029