ОФУспехи физиологических наук Progress in Physiological Science

  • ISSN (Print) 0301-1798
  • ISSN (Online) 3034-6118

ФОРМИРОВАНИЕ СЛУХОВЫХ ОБЪЕКТОВ И ЕГО ОТРАЖЕНИЕ В ВЫЗВАННЫХ ПОТЕНЦИАЛАХ МОЗГА

Код статьи
S3034611825030041-1
DOI
10.7868/S3034611825030041
Тип публикации
Статья
Статус публикации
Опубликовано
Авторы
Том/ Выпуск
Том 56 / Номер выпуска 3
Страницы
60-79
Аннотация
Избирательное распознавание звука на фоне конкурирующих звуков (разделение слуховой фигуры и фона) является одной из основных проблем, с которыми сталкивается слушатель в повседневных ситуациях. Компоненты сложных акустических сцен часто перекрываются как по времени, так и по частотному составу. Слуховая система человека непрерывно анализирует их с помощью механизмов одновременной и последовательной группировки, либо формируя устойчивые слуховые объекты, либо демонстрируя переключения восприятия между разделенной и интегрированной организацией звукового потока. Цель обзора – описать слуховые вызванные потенциалы (ВП) как средство исследования перцептивного разделения слуховых объектов в разных экспериментальных парадигмах. Особое внимание в обзоре уделено роли пространственных признаков звука. Они могут вносить значительный вклад в выделение слуховых объектов, хотя и меньший по сравнению с частотными или временными характеристиками. Предсознательное разделение объектов при одновременной группировке и при выделении фигуры из фона отражает потенциал ORN (object-related negativity). Следующая за ORN позитивная волна P400 предположительно связана с когнитивными процессами определения количества звучащих объектов. Анализ ВП позволяет исследовать разные этапы разделения звуковых потоков, когда продолжающаяся стимуляция не меняется, а ее восприятие регулярно переключается между двумя перцептами. Индикаторами переключения восприятия в различных экспериментальных условиях могут выступать компоненты ВП: P1, N1, N2, P3a, MMN и длящийся потенциал. Вклад локализационных признаков в показатели ЭЭГ при выделении фигуры из фона остается недостаточно изученным. С точки зрения фундаментального подхода важно, что разделение потоков происходит уже на предсознательном этапе восприятия, но может проявляться также и в поздних компонентах ВП, связанных с переключением внимания. В целом ВП являются потенциальным клиническим инструментом для оценки формирования слуховых объектов в реальных акустических условиях.
Ключевые слова
вызванные потенциалы ЭЭГ слуховые объекты пространственный слух одновременная и последовательная группировка
Дата публикации
07.12.2025
Год выхода
2025
Всего подписок
0
Всего просмотров
29

Библиография

  1. 1. Шестопалова Л.Б., Петропавловская Е.А. Негативность рассогласования и пространственный слух // Успехи физиологических наук. 2019. Т. 50. № 3. С. 14. DOI: 10.1134/S0301179819030093.
  2. 2. Alain C. Breaking the wave: effects of attention and learning on concurrent sound perception // Hear. Res. 2007. V. 229. P. 225–236. doi: 10.1016/j.heares.2007.01.011.
  3. 3. Alain C., Arnott S.R., Picton T.W. Bottom-up and top-down influences on auditory scene analysis: Evidence from event-related brain potentials // J. Exp. Psychol. Hum. Percept. Perform. 2001. V. 27. doi: 10.1037//0096-1523.27.5.1072.
  4. 4. Alain C., Izenberg A. Effects of attentional load on auditory scene analysis // J. Cogn. Neurosci. 2003. V. 15. https://doi.org/10.1162/089892903770007443.
  5. 5. Alain C., Schuler B.M., McDonald K.L. Neural activity associated with distinguishing concurrent auditory objects // J. Acoust. Soc. Am. 2002. V. 111. https://doi.org/10.1121/1.1434942.
  6. 6. Alain C., Reinke K., McDonald K.L. et al. Left thalamo-cortical network implicated in successful speech separation and identification // Neuroimage. 2005. V. 26. P. 592–599. doi: 10.1016/j.neuroimage.2005.02.006.
  7. 7. Assmann P.F. Modeling the perception of concurrent vowels: Role of formant transitions // J. Acoust. Soc. Am. 1996. V. 100. № 2. P. 1141–1152.
  8. 8. Best V., Gallun F.J., Carlile S., Shinn-Cunningham B.G. Binaural interference and auditory grouping // J. Acoust. Soc. Am. 2007. V. 121. № 2. P. 1070–1076. doi: 10.1121/1.2407738.
  9. 9. Bidelman G.M., Alain C. Hierarchical neurocomputations underlying concurrent sound segregation: Connecting periphery to percept // Neuropsychologia. 2015. V. 68. P. 38–50. doi: 10.1016/j.neuropsychologia.2014.12.020.
  10. 10. Bizley J.K., Cohen Y.E. The what, where and how of auditory-object perception // Nat. Rev. Neurosci. 2013. V. 14. № 10. P. 693–707. doi: 10.1038/nrn3565.
  11. 11. Boehnke S.E., Phillips D.P. The relation between auditory temporal interval processing and sequential stream segregation examined with stimulus laterality differences // Percept. Psychophys. 2005. V. 67. P. 1088–1101. DOI: 10.3758/bf03193634.
  12. 12. Bőhm T.M., Shestopalova L., Bendixen A. et al. The role of perceived source location in auditory stream segregation: Separation affects sound organization, common fate does not // Learn. Percept. 2013. V. 5. Suppl. 2. P. 55–72. doi: 10.1556/LP.5.2013.Suppl2.5.
  13. 13. Bregman A.S. Auditory Scene Analysis. 1990. ISBN: 9780262521956. MIT Press.
  14. 14. Calcus A. Development of auditory scene analysis: A mini-review // Front. Hum. Neurosci. 2024. V. 18: 1352247. doi: 10.3389/fnhum.2024.1352247.
  15. 15. Clapp W.C., Johnson B.W., Hautus M.J. Graded cue information in dichotic pitch: Effects on event-related potentials // Neuroreport. 2007. V. 18. № 4. P. 365–368. doi: 10.1097/WNR.0b013e32801776d1.
  16. 16. Culling J.F., Summerfield Q. Perceptual separation of concurrent speech sounds: Absence of across-frequency grouping by common interaural delay // J. Acoust. Soc. Am. 1995. V. 98. P. 785–797.
  17. 17. De Cheveigné A., Kawahara H., Tsuzaki M., Aikawa K. Concurrent vowel identification. I. Effects of relative amplitude and F0 difference // J. Acoust. Soc. Am. 1997. V. 101. № 5. P. 2839–2847.
  18. 18. Denham S.L., Gyimesi K., Stefanics G., Winkler I. Stability of perceptual organization in auditory streaming // In: The Neurophysiological Bases of Auditory Perception, eds. E.A. Lopez-Poveda, A.R. Palmer, R. Meddis. New York, Springer. 2010. P. 477–487. doi: 10.1007/978-1-4419-5686-6_44.
  19. 19. Denham S.L., Gyimesi K., Stefanics G., Winkler I. Perceptual bi-stability in auditory streaming: How much do stimulus features matter? // Learn. Percept. 2013. V. 5. Suppl. 2. P. 73–100. doi: 10.1556/LP.5.2013.Suppl2.6.
  20. 20. Denham S.L., Winkler I. Predictive coding in auditory perception: challenges and unresolved questions // Eur. J. Neurosci. 2020. V. 51. № 5. P. 1151–1160. doi: 10.1111/ejn.13802.
  21. 21. Dougherty R.F., Cynader M.S., Bjornson B.H., Edgell D., Giaschi D.E. Dichotic pitch: A new stimulus distinguishes normal and dyslexic auditory function // NeuroReport. 1998. V. 9. https://doi.org/10.1097/00001756-199809140-00015.
  22. 22. Du Y., He Y., Ross B. et al. Human auditory cortex activity shows additive effects of spectral and spatial cues during speech segregation // Cerebral Cortex. 2010. V. 21. № 3. P. 698–707. doi: 10.1093/cercor/bhq136.
  23. 23. Dyson B.J., Alain C. Representation of concurrent acoustic objects in primary auditory cortex // J. Acoust. Soc. Am. 2004. V. 115. № 1. P. 280–288. doi: 10.1121/1.1631945.
  24. 24. Dyson B.J., Alain C., He Y. Effects of visual attentional load on low-level auditory scene analysis // Cogn. Affect. Behav. Neurosci. 2005. V. 5. doi: 10.3758/cabn.5.3.319.
  25. 25. Fishman Y.I., Steinschneider M., Micheyl C. Neural representation of concurrent harmonic sounds in monkey primary auditory cortex: implications for models of auditory scene analysis // J. Neurosci. 2014. V. 34. № 37. P. 12425–12443. doi: 10.1523/JNEUROSCI.0025-14.2014.
  26. 26. Gohari N., Dastgerdi Z.H., Bernstein L.J., Alain C. Neural correlates of concurrent sound perception: A review and guidelines for future research // Brain and Cognition. 2022. V. 163. 105914. doi: 10.1016/j.bandc.2022.105914.
  27. 27. Gohari N., Dastgerdi Z.H., Rouhbakhsh N., Afshar S., Mobini R. Training Programs for Improving Speech Perception in Noise: A Review // J. Audiol. Otol. 2023. V. 27. № 1. P. 1–9. https://doi.org/10.7874/jao.2022.00283.
  28. 28. Griffiths T.D., Warren J.D. The planum temporale as a computational hub // Trends in Neurosci. 2002. V. 25. № 7. P. 348–353. DOI: 10.1016/s0166-2236(02)02191-4.
  29. 29. Grimault N., Bacon S.P., Micheyl C. Auditory stream segregation on the basis of amplitude-modulation rate // J. Acoust. Soc. Am. 2002. V. 111. P. 1340–1348. doi: 10.1121/1.1452740.
  30. 30. Guo X., Dheerendra P., Benzaquén E., Sedley W., Griffiths T.D. EEG responses to auditory figure-ground perception // Hear. Res. 2022. V. 422. 108524. https://doi.org/10.1016/j.heares.2022.108524.
  31. 31. Hautus M.J., Johnson B.W. Object-related brain potentials associated with the perceptual segregation of a dichotically embedded pitch // J. Acoust. Soc. Am. 2005. V. 117. https://doi.org/10.1121/1.1828499.
  32. 32. Higgins N.C., Little D.F., Yerkes B.D. et al. Neural correlates of perceptual switching while listening to bistable auditory streaming stimuli // Neuroimage. 2020. V. 204: 116220. doi: 10.1016/j.neuroimage.2019.116220.
  33. 33. Higgins N.C., Scurry A.N., Jiang F. et al. Adaptation in the sensory cortex drives bistable switching during auditory stream segregation // Neurosci. Conscious. 2023. V. 1. P. 1–12. DOI: https://doi.org./10.1093/nc/niac019.
  34. 34. Johnson B.W. Processing of Binaural Information in Human Auditory Cortex // In: Advances in Sound Localization. P. Strumillo (ed.). 2011. P. 407–430. d o i : 10 . 5772 / 14268 Source : InTeCh. ISBN978-953-307-224-1.
  35. 35. Johnson B.W., Hautus M.J. Processing of binaural spatial information in human auditory cortex: Neuromagnetic responses to interaural timing and level differences // Neuropsychologia. 2010. V. 48. № 9. P. 2610–2619. doi: 10.1016/j.neuropsychologia.2010.05.008.
  36. 36. Johnson B.W., Hautus M.J., Duff D.J., Clapp W.C. Sequential processing of interaural timing differences for sound source segregation and spatial localization: Evidence from event-related cortical potentials // Psychophysiol. 2007. V. 44. № 4. P. 541–551. doi: 10.1111/j.1469-8986.2007.00535.x.
  37. 37. Kidd G., Mason C.R., Deliwala P.S., Woods W.S., Colburn H.S. Reducing informational masking by sound segregation // J. Acoust. Soc. Am. 1994. V. 95. P. 3475–3480. doi: 10.1121/1.410023.
  38. 38. Kidd G., Mason C.R., Dai H. Discriminating coherence in spectro-temporal patterns // J. Acoust. Soc. Am. 1995. V. 97. P. 3782–3790. doi: 10.1121/1.413107.
  39. 39. Kidd G., Mason C.R. Multiple bursts, multiple looks, and stream coherence in the release from informational masking // J. Acoust. Soc. Am. 2003. V. 114. P. 2835–2845. doi: 10.1121/1.1621864.
  40. 40. Kocsis Z., Winkler I., Szalárdy O., Bendixen A. Effects of multiple congruent cues on concurrent sound segregation during passive and active listening: An event-related potential (ERP) study // Biol. Psychol. 2014. V. 100. P. 20–33. http://dx.doi.org/10.1016/j.biopsycho.2014.04.005.
  41. 41. Kocsis Z., Winkler I., Bendixen A., Alaine C. Promoting the perception of two and three concurrent sound objects: An event-related potential study // Int. J. Psychophysiol. 2016. V. 107. P. 16–28. doi.org/10.1016/j.ijpsycho.2016.06.016.
  42. 42. Lipp R., Kitterick P., Summerfield Q., Bailey P.J., Paul-Jordanov I. Concurrent sound segregation based on inharmonicity and onset asynchrony // Neuropsychologia. 2010. V. 48. № 5. P. 1417–1425. doi: 10.1016/j.neuropsychologia.2010.01.009.
  43. 43. Lodhia V., Brock J., Johnson B.W., Hautus M.J. Reduced object related negativity response indicates impaired auditory scene analysis in adults with autistic spectrum disorder // PeerJ. 2014. Feb 25:2:e261. doi.org/10.7717/peerj.261.
  44. 44. Lodhia V., Hautus M.J., Johnson B.W., Brock J. Atypical brain responses to auditory spatial cues in adults with autism spectrum disorder // Eur. J. Neurosci. 2018. V. 47. № 6. P. 682–689. doi:10.1111/ejn.13694.
  45. 45. McDonald K.L., Alain C. Contribution of harmonicity and location to auditory object formation in free field: Evidence from event-related brain potentials // J. Acoust. Soc. Am. 2005. V. 118. № 3. Pt 1. P. 1593–1604. doi: 10.1121/1.2000747.
  46. 46. Mehrkian S., Moossavi A., Gohari N., Nazari M.A., Bakhshi E.A.C. Long Latency auditory evoked potentials and object-related negativity based on harmonicity in hearing-impaired children // Neurosci. Res. 2022. V. 178. P. 52–59. doi: 10.1016/j.neures.2022.01.001.
  47. 47. Micheyl C., Oxenham A.J. Objective and subjective psychophysical measures of auditory stream integration and segregation // JARO. 2010. V.11. P. 709–724. DOI: 10.1007/s10162-010-0227-2.
  48. 48. Middlebrooks J.C., Onsan Z.A. Stream segregation with high spatial acuity // J. Acoust. Soc. Am. 2012. V. 132. № 6. P. 3896–3911. DOI: 10.1121/1.4764879
  49. 49. Molloy K., Lavie N., Chait M. Auditory figure-ground segregation is impaired by high visual load // J. Neurosci. 2019. V. 39. № 9. P. 1699–1708. https://doi.org/10.1523/JNEUROSCI.2518-18.2018.
  50. 50. Moore B.C., Glasberg B.R., Peters R.W. Thresholds for hearing mistimed partials as separate tones in harmonic complexes // J. Acoust. Soc. Am. 1986. V. 80. P. 479–483.
  51. 51. Pressnitzer D., Hupé J.M. Temporal dynamics of auditory and visual bistability reveal common principles of perceptual organization // Curr. Biol. 2006. V. 16. № 13. P. 1351–1357. doi: 10.1016/j.cub.2006.05.054.
  52. 52. Ramage E.M., Klimas N., Vogel S.J. et al. Concurrent sound segregation impairments in schizophrenia: The contribution of auditoryspecific and general cognitive factors // Schizophr. Res. 2016. V. 170. № 1. P. 95–101. doi: 10.1016/j.schres.2015.11.023.
  53. 53. Reed D.K., Chait M., Tóth B., Winkler I., ShinnCunningham B. Spatial cues can support auditory figure-ground segregation // J. Acoust. Soc. Am. 2020. V. 147. № 6. P. 3814–3818. https://doi.org/10.1121/10.0001387.
  54. 54. Roberts B., Glasberg B.R., Moore B.C. Primitive stream segregation of tone sequences without differences in fundamental frequency or passband // J. Acoust. Soc. Am. 2002. V. 112. P. 2074–2085. doi: 10.1121/1.1508784.
  55. 55. Sanders L.D., Joh A.S., Keen R.E., Freyman R.L. One sound or two? Object-related negativity indexes echo perception // Percept. Psychophys. 2008. V. 70. № 8. P. 1558–1570. doi: 10.3758/PP.70.8.1558.
  56. 56. Sanders R.D., Winston J.S., Barnes G.R., Rees G. Magnetoencephalographic correlates of perceptual state during auditory bistability // Sci. Rep. 2018. V. 8. P. 976. https:// doi.org/10.1038/s41598-018-19287-0.
  57. 57. Schadwinkel S., Gutschalk A. Functional dissociation of transient and sustained f MRI BOLD components in human auditory cortex revealed with a streaming paradigm based on interaural time differences // Eur. J. Neurosci. 2010a. V. 32. P. 1970–1978. doi: 10.1111/j.1460-9568.2010.07459.x.
  58. 58. Schadwinkel S., Gutschalk A. Activity associated with stream segregation in human auditory cortex is similar for spatial and pitch cues // Cereb. Cortex. 2010b. V. 20. P. 2863–2873. doi:10.1093/cercor/bhq037.
  59. 59. Schadwinkel S., Gutschalk A. Transient bold activity locked to perceptual reversals of auditory streaming in human auditory cortex and inferior colliculus // J. Neurophysiol. 2011. V. 105. P. 1977–1983. doi:10.1152/jn.00461.2010.
  60. 60. Schneider F., Dheerendra P., Balezeau F. et al. Auditory figure-ground analysis in rostral belt and parabelt of the macaque monkey // Sci. Rep. 2018. V. 8: 17948. doi: 10.1038/s41598-018-36903-1.
  61. 61. Schneider F., Balezeau F., Distler C. et al. Neuronal figure-ground responses in primate primary auditory cortex // Cell Rep. 2021. V. 35. № 11: 109242. doi: 10.1016/j.celrep.2021.109242.
  62. 62. Shestopalova L., Bőhm T.M., Bendixen A. et al. Do audio-visual motion cues promote segregation of auditory streams? // Front. Neurosci. 2014. V. 8: 64. doi: 10.3389/fnins.2014.00064.
  63. 63. Snyder J.S., Alain C. Toward a neurophysiological theory of auditory stream segregation // Psychol. Bull. 2007. V. 133. № 5. P. 780–799. doi: 10.1037/0033-2909.133.5.780.
  64. 64. Stuckenberg M.V., Nayak C.V., Meyer B.T. et al. Age effects on concurrent speech segregation by onset asynchrony // J. Speech Lang. Hear. Res. 2019. V. 62. № 1. P. 177–189. doi: 10.1044/2018_JSLHR-H-18-0064.
  65. 65. Sussman E.S. Auditory Scene Analysis: An Attention Perspective // J. Speech Lang. Hear. Res. 2017. V. 60. P. 2989–3000. doi: 10.1044/2017_JSLHR-H-17-0041
  66. 66. Sussman E.S., Chen S., Sussman-Fort J., Dinces E. The five myths of MMN: Redefining how to use MMN in basic and clinical research // Brain Topogr. 2014. V. 27. № 4. P. 553–564. https://doi.org/10.1007/s10548-013-0326-6.
  67. 67. Sussman E.S., Ritter W., Vaughan H.G. An investigation of the auditory streaming effect using event-related brain potentials // Psychophysiol. 1999. V. 36. № 1. P. 22–34.
  68. 68. Szalárdy O., Bendixen A., Tóth D., Denham S.L., Winkler I. Modulation frequency difference acts as a primitive cue for auditory stream segregation // Learn. Percept. 5. Suppl. 2. 2013a. P. 149–161. doi: 10.1556/LP.5.2013.Suppl2.9.
  69. 69. Szalárdy O., Bőhm T.M., Bendixen A., Winkler I. Event-related potential correlates of sound organization: Early sensory and late cognitive effects // Biol. Psychol. 2013b. V. 93. P. 97–104. doi: 10.1016/j.biopsycho.2013.01.015.
  70. 70. Teki S., Chait M., Kumar S., von Kriegstein K., Griffiths T.D. Brain bases for auditory stimulusdriven figure-ground segregation // J. Neurosci. 2011. V. 31. P. 164–171. https://doi.org/10.1523/ JNEUROSCI.3788-10.2011.
  71. 71. Teki S., Chait M., Kumar S., Shamma S., Griffiths T.D. Segregation of complex acoustic scenes based on temporal coherence // eLife. 2013. 2:e00699. doi: 10.7554/eLife.00699.
  72. 72. Teki S., Barascud N., Picard S., Payne C., Griffiths T.D., Chait M. Neural correlates of auditory figure-ground segregation based on temporal coherence // Cereb. Cortex. 2016. V. 26. № 9. P. 3669–3680. doi: 10.1093/cercor/bhw173.
  73. 73. Tóth B., Farkas D., Urbán G. et al. Attention and speech-processing related functional brain networks activated in a multispeaker environment // PLoS One 14(2): e0212754. https://doi.org/10.1371/journal.pone.0212754.
  74. 74. Tóth B., Kocsis Z., Háden G.P., Szerafin Á., ShinnCunningham B.G., Winkler I. EEG signatures accompanying auditory figure-ground segregation // Neuroimage. 2016. V. 141. P. 108–119. doi: 10.1016/j.neuroimage.2016.07.028.
  75. 75. Van Noorden L.P.A.S. Temporal coherence in the perception of tone sequences // PhD. Eindhoven University of Technology. Leiden. The Netherlands. 1975.
  76. 76. Vliegen J., Oxenham A.J. Sequential stream segregation in the absence of spectral cues // J. Acoust. Soc. Am. 1999. V. 105. P. 339–346.
  77. 77. Weise A., Schröger E., Bendixen A. The processing of concurrent sounds based on inharmonicity and asynchronous onsets: An object-related negativity (ORN) study // Brain Res. 2012. V. 1439. P. 73–81. doi: 10.1016/j.brainres.2011.12.044.
  78. 78. Winkler I., Denham S.L., Nelken I. Modeling the auditory scene: Predictive regularity representations and perceptual objects // Trends Cogn. Sci. 2009. V. 13. P. 532–540. doi: 10.1016/j.tics.2009.09.003.
  79. 79. Winkler I., Denham S., Mill R., Bőhm T.M., Bendixen A. Multistability in auditory stream segregation: A predictive coding view // Phil. Trans. R. Soc. B. 2012. V. 367. P. 1001–1012. doi: 10.1098/rstb.2011.0359.
  80. 80. Winkler I., Takegata R., Sussmann E. Eventrelated brain potentials reveal multiple stages in the perceptual organization of sound // Cogn. Brain Res. 2005. V. 25. P. 291–299. doi: 10.1016/j.cogbrainres.2005.06.005.
QR
Перевести

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Высшая аттестационная комиссия

При Министерстве образования и науки Российской Федерации

Scopus

Научная электронная библиотека