- Код статьи
- S3034611825030023-1
- DOI
- 10.7868/S3034611825030023
- Тип публикации
- Статья
- Статус публикации
- Опубликовано
- Авторы
- Том/ Выпуск
- Том 56 / Номер выпуска 3
- Страницы
- 24-42
- Аннотация
- Периваскулярная жировая ткань (ПВЖТ) окружает большинство кровеносных сосудов млекопитающих, тесный контакт с адвентицией которых даёт основание рассматривать ее в качестве 4-го слоя стенки сосуда. Уникальное расположение ПВЖТ делает значимыми паракринные влияния секретируемых ею факторов, многие из которых являются вазоактивными модуляторами (адипокины, ангиотензины, газотрансмиттеры, цитокины). В физиологических условиях секреция этих веществ вызывает выраженное антисократительное действие на гладкие мышцы сосудов, а существование взаимовлияний между ПВЖТ и сосудистой стенкой позволяет обеспечивать тонкую регуляцию сосудистого тонуса, необходимую для адекватного кровоснабжения органов в соответствии с их метаболическими потребностями. Дисфункция ПВЖТ при ожирении приводит к изменениям в экспрессии продуцируемых веществ, что вызывает трансформацию протективного влияния ПВЖТ на тонус сосудов в просократительное, усиливающее реактивность сосудов к действию вазоконстрикторных агентов и приводящее к повышению артериального давления. Цель обзора – представить современное состояние исследований, направленных на выяснение особенностей функционирования ПВЖТ, влияния секретируемых ею веществ на сосудистый тонус в норме и при дисфункции, вызванной ожирением. Основное внимание уделено паракринным влияниям, изучение которых является предпосылкой для разработки в будущем терапии сосудистых нарушений, нацеленной на нормализацию функционирования и секреторной активности ПВЖТ.
- Ключевые слова
- периваскулярная жировая ткань вазоконстрикция вазодилатация супероксид адипокин ангиотензин оксид азота сероводород ожирение
- Дата публикации
- 07.12.2025
- Год выхода
- 2025
- Всего подписок
- 0
- Всего просмотров
- 31
Библиография
- 1. Александрова Н.П. Ожирение как основной фактор влияния метаболического синдрома на функцию внешнего дыхания // Успехи физиол. наук. 2024. Т. 55. № 4. С. 113–124. https://doi.org/10.31857/S030117982404006
- 2. Лобов Г.И. Сократительная функция брыжеечных лимфатических узлов крыс при ожирении // Вопросы питания. 2024. Т. 93. № 4 (554). С. 39–48. https://doi.org/10.33029/0042-8833-2024-93-4-39-48
- 3. Панькова М.Н. Дисфункциональные изменения брыжеечных артерий в ранние сроки ожирения крыс при высокожировой диете // Ожирение и метаболизм. 2022. Т. 19. № 2. С. 158–165. https://doi.org/10.14341/omet12842
- 4. Панькова М.Н. Эндотелий-независимое антисократительное влияние периваскулярной жировой ткани аорты крысы в норме и при метаболических нарушениях, индуцированных диетой кафе // Росс. физиологический журнал им. И.М. Сеченова. 2023. Т. 109. № 12. С. 1870–1872. https://doi.org/10.31857/S0869813923120075
- 5. Панькова М.Н. Возврат к стандартному питанию после высококалорийной диеты улучшает метаболические показатели и реактивность аорты крысы // Ожирение и метаболизм. 2024. Т. 21. № 4. С. 416–423. https://doi.org/10.14341/omet13105
- 6. Подзолков В.И., Брагина А.Е., Осадчий К.К. и др. Эктопическое ожирение у пациентов без клинически значимых сердечно-сосудистых заболеваний: ориентировочные нормативы, частота и клинические характеристики // Терапевтический архив. 2022. Т. 94. № 9. С. 1072–1077. https://doi.org/10.26442/00403660.2022.09.201847. – EDN JJMRAU.
- 7. Achari A.E., Jain S.K. Adiponectin, a Therapeutic Target for Obesity, Diabetes, and Endothelial Dysfunction // Int. J. Mol. Sci. 2017. V. 18. № 6. Р. 1321. https://doi.org/10.3390/ijms18061321
- 8. Aghamohammadzadeh R., Greenstein A.S., Yadav R. et al. Effects of bariatric surgery on human small artery function: Evidence for reduction in perivascular adipocyte inf lammation, and the restoration of normal anticontractile activity despite persistent obesity // J. Am. Coll.Cardiol. 2013. V. 62. № 2. P. 128–135. https://doi.org/10.1016/j.jacc.2013.04.027
- 9. Akcabag E., Bayram Z., Kucukcetin I.O. et al. Functional effects of visfatin in isolated rat mesenteric small resistance arteries // Eur. J. Pharmacol. 2021. V. 908. P. 174333 https://doi.org/10.1016/j.ejphar.2021.174333
- 10. Akoumianakis I., Antoniades C. The interplay between adipose tissue and the cardiovascular system: Is fat always bad? // Cardiovasc. Res. 2017. V. 113. № 9. P. 999–1008. https://doi.org/10.1093/cvr/cvx111.
- 11. Antoniades C., Tousoulis D., Vavlukis M. et al. Perivascular adipose tissue as a source of therapeutic targets and clinical biomarkers // European heart journal. 2023. V. 44. № 38. P. 3827–3844. https://doi.org/10.1093/eurheartj/ehad484
- 12. Antonopoulos A.S., Sanna F., Sabharwal N. et al. Detecting human coronary inflammation by imaging perivascular fat // Sci. Transl. Med. 2017. V. 9. № 398. P. eaal2658. https://doi.org/10.1126/scitranslmed.aal2658
- 13. Atawia R.T., Faulkner J.L., Mehta V. et al. Endothelial leptin receptor is dispensable for leptin-induced sympatho-activation and hypertension in male mice // Vascul. Pharmacol. 2022. V. 146. P. 107093. https://doi.org/10.1016/j.vph.2022.107093.
- 14. Banerjee R., Chiku T., Kabil O. et al. Assay methods for H2S biogenesis and catabolism enzymes // Methods Enzymol. 2015. V. 554. P. 189–200. https://doi.org/10.1016/bs.mie.2014.11.016
- 15. Barp C.G., Bonaventura D., Assreuy J. NO, ROS, RAS, and PVAT: More Than a Soup of Letters // Front. Physiol. 2021. V. 12. P. 640021. https://doi.org/10.3389/fphys.2021.640021
- 16. Bartness T.J., Vaughan C.H., Song C.K. Sympathetic and sensory innervation of brown adipose tissue // Int. J. Obes. (Lond). 2010. V. 34. Suppl 1(01). P. S36–42. https://doi.org/10.1038/ijo.2010.182.
- 17. Baylie R., Ahmed M., Bonev A.D. et al. Lack of direct effect of adiponectin on vascular smooth muscle cell BKCa channels or Ca2+ signaling in the regulation of small artery pressure-induced constriction // Physiol. Rep. 2017. V. 5. № 16. P. e13337. https://doi.org/10.14814/phy2.13337
- 18. Bayram Z., Akcabag E., Ozbey G. et al. The Functional Effects of Visfatin on Human Left Internal Mammary Artery // J. Cardiovasc. Pharmacol. 2022. № 80. № 5. P. 725–731. https://doi.org/10.1097/FJC.0000000000001327.
- 19. Bharadwaj L.A., Prasad K. Mechanism of superoxide anion-induced modulation of vascular tone // Int. J. Angiol. 2002. V. 11. P. 23–29. https://doi.org/10.1007/s00547-001-0049-5.
- 20. Blüher M. Metabolically Healthy Obesity // Endocr. Rev. 2020. V. 41. № 3. P. bnaa004. https://doi.org/10.1210/endrev/bnaa004
- 21. Bolić B., Mijušković A., Popović-Bijelić A. et al. Reactions of superoxide dismutases with HS(-)/H2S and superoxide radical anion: An in vitro EPR study // Nitric Oxide. 2015. V. 51. P. 19–23. https://doi.org/10.1016/j.niox.2015.09.008
- 22. Brown N.K., Zhou Z., Zhang J. et al. Perivascular adipose tissue in vascular function and disease: Areview of current research and animal models // Arterioscler. Thromb. Vasc. Biol. 2014. V. 34. № 8. P. 1621–30. https://doi.org/10.1161/ATVBAHA.114.303029
- 23. Burgoyne J.R., Madhani M., Cuello F. et al. Cysteine redox sensor in PKGIa enables oxidantinduced activation // Science. 2007. V. 317. № 5843. P. 1393–1397. https://doi.org/10.1126/science.1144318
- 24. Bussey C.E., Withers S.B., Saxton S.N. et al. β3-Adrenoceptor stimulation of perivascular adipocytes leads to increased fat cell-derived NO and vascular relaxation in small arteries // Br. J. Pharmacol. 2018. V. 175. № 18. P. 3685–3698. https://doi.org/10.1111/bph.14433
- 25. Cacanyiova S., Golas S., Zemancikova A. et al. The Vasoactive Role of Perivascular Adipose Tissue and the Sulfide Signaling Pathway in a Nonobese Model of Metabolic Syndrome // Biomolecules. 2021. V. 11. № 1. P. 108. https://doi.org/10.3390/biom11010108
- 26. Ceron C.S., Luizon M.R., Palei A.C. The Potential Role of Visfatin in Mediating Vascular Dysfunction and Hypertension // J. Cardiovasc. Pharmacol. 2023. V. 82. № 5. Р. 347–349. https://doi.org/10.1097/FJC.0000000000001457
- 27. Chait A., den Hartigh L.J. Adipose Tissue Distribution, Inflammation and Its Metabolic Consequences, Including Diabetes and Cardiovascular Disease // Front. Cardiovasc. Med. 2020. V. 7. Р. 22. https://doi.org/10.3389/fcvm.2020.00022
- 28. Chang L., Villacorta L., Li R. et al. Loss of perivascular adipose tissue on peroxisome proliferator-activated receptor-γ deletion in smooth muscle cells impairs intravascular thermoregulation and enhances atherosclerosis // Circulation. 2012. V. 126. № 9. Р. 1067–1078. https://doi.org/10.1161/ CIRCULATIONAHA.112.104489
- 29. Chang Y.H., Chang D.M., Lin K.C. et al. Visfatin in overweight/obesity, type 2 diabetes mellitus, insulin resistance, metabolic syndrome and cardiovascular diseases: A meta-analysis and systemic review // Diabetes/metabolism research and reviews. 2011. V. 27. № 6. Р. 515–527. https://doi.org/10.1002/dmrr.1201
- 30. Chatterjee T.K., Stoll L.L., Denning G.M. et al. Proinf lammatory phenotype of perivascular adipocytes: Inf luence of high-fat feeding // Circulation research. 2009. V. 104. № 4. Р. 541–549. https://doi.org/10.1161/ CIRCRESAHA.108.182998.
- 31. Chen H.H., Tseng Y.J., Wang S.Y. et al. The metabolome profiling and pathway analysis in metabolic healthy and abnormal obesity // Int. J. Obes. (Lond). 2015. V. 39. № 8. Р. 1241–1248. https://doi.org/10.1038/ijo.2015.65
- 32. Cheng C.K., Bakar H.A., Gollasch M., Huang Y. Perivascular adipose tissue: The sixth man of the cardiovascular system // Cardiovasc. Drugs Ther. 2018. V. 32. Р. 481–502. https://doi.org/10.1007/S10557-018-6820-Z
- 33. Cinti S. The adipose organ // Prostaglandins Leukot. Essent. Fatty Acids. 2005. V. 73. № 1. Р. 9–15. https://doi.org/10.1016/j.plefa.2005.04.010
- 34. Contreras G.A., Thelen K., Ayala-Lopez N., Watts S.W. The distribution and adipogenic potential of perivascular adipose tissue adipocyte progenitors is dependent on sexual dimorphism and vessel location // Physiological reports. 2016. V. 4. № 19. Р. e12993. https://doi.org/10.14814/phy2.12993
- 35. Costa R.M., Filgueira F.P., Tostes R.C. et al. H2O2 generated from mitochondrial electron transport chain in thoracic perivascular adipose tissue is crucial for modulation of vascular smooth muscle contraction // Vascul. Pharmacol. 2016. V. 84. Р. 28–37. https://doi.org/10.1016/j.vph.2016.05.008.
- 36. Denizalti M., Bozkurt T.E., Akpulat U. et al. The vasorelaxant effect of hydrogen sulfide is enhanced in streptozotocin-induced diabetic rats // Naunyn Schmiedebergs Arch. Pharmacol. 2011. V. 383. № 5. Р. 509–517. https://doi.org/10.1007/s00210-011-0601-6
- 37. Dessie G., Ayelign B., Akalu Y., Shibabaw T., MollaM.D. Effect of Leptin on Chronic Inflammatory Disorders: Insights to Therapeutic Target to Prevent Further Cardiovascular Complication // Diabetes, metabolic syndrome and obesity: targets and therapy. 2021. V. 14. Р. 3307–3322. https://doi.org/10.2147/DMSO.S321311
- 38. Dos Reis Costa D.E.F., Silveira A.L.M., Campos G.P. et al. High-Carbohydrate Diet Enhanced the Anticontractile Effect of Perivascular Adipose Tissue Through Activation of Renin-Angiotensin System // Front. Physiol. 2021. V. 11. Р. 628101. https://doi.org/10.3389/fphys.2020.628101.
- 39. Efremova A., Senzacqua M., Venema W. et al. A large proportion of mediastinal and perirenal visceral fat of Siberian adult people is formed by UCP1 immunoreactive multilocular and paucilocular adipocytes // J. Physiol. Biochem. 2020. V. 76. № 2. Р. 185–192. https://doi.org/10.1007/s13105-019-00721-4.
- 40. Emont M.P., Jacobs C., Essene A.L. et al. A singlecell atlas of human and mouse white adipose tissue // Nature. 2022. V. 603. № 7903. Р. 926–933. https://doi.org/10.1038/s41586-022-04518-2
- 41. Fang L., Zhao J., Chen Y. et al. Hydrogen sulfide derived from periadventitial adipose tissue is a vasodilator // J. Hypertens. 2009. V. 27. № 11. Р. 2174–2185. https://doi.org/10.1097/HJH.0b013e328330a900
- 42. Farr O.M., Gavrieli A., Mantzoros C.S. Leptin applications in 2015: what have we learned about leptin and obesity? // Curr. Opin. Endocrinol. Diabetes Obes. 2015. V. 22. № 5. Р. 353–359. https://doi.org/10.1097/ MED.0000000000000184.
- 43. Fésüs G., Dubrovska G., Gorzelniak K. et al. Adiponectin is a novel humoral vasodilator // Cardiovasc Res. 2007. V. 75. № 4. Р. 719–727. https://doi.org/10.1016/j.cardiores.2007.05.025
- 44. Formentini L., Moroni F., Chiarugi A. Detection and pharmacological modulation of nicotinamide mononucleotide (NMN) in vitro and in vivo // Biochem. Pharmacol. 2009. V. 77. Р. 1612–1620. https://doi.org/10.1016/j.bcp.2009.02.017
- 45. Fortuño A., Rodríguez A., Gómez-Ambrosi J. et al. Leptin inhibits angiotensin II-induced intracellular calcium increase and vasoconstriction in the rat aorta // Endocrinology. 2002. V. 143. № 9. Р. 3555–3560. https://doi.org/10.1210/en.2002-220075.
- 46. Furukawa S., Fujita T., Shimabukuro M. et al. Increased oxidative stress in obesity and its impact on metabolic syndrome // The Journal of clinical investigation. 2004. V. 114. № 12. Р. 1752–1761. https://doi.org/10.1172/JCI21625.
- 47. Gálvez-Prieto B., Bolbrinker J., Stucchi P. et al. Comparative expression analysis of the reninangiotensin system components between white and brown perivascular adipose tissue // J. Endocrinol. 2008. V. 197. № 1. Р. 55–64. https://doi.org/10.1677/JOE-07-0284
- 48. Gao Y.J., Lu C., Su L.Y. et al. Modulation of vascular function by perivascular adipose tissue: The role of endothelium and hydrogen peroxide // Br. J. Pharmacol. 2007. V. 151. Р. 323–331. https://doi.org/10.1038/sj.bjp.0707228.
- 49. Gao Y.J., Takemori K., Su L.Y. et al. Perivascular adipose tissue promotes vasoconstriction: the role of superoxide anion // Cardiovasc. Res. 2006. V. 71. № 2. Р. 363–373. https://doi.org/10.1016/j.cardiores.2006.03.013.
- 50. Gil-Ortega M., Somoza B., Huang Y. et al. Regional differences in perivascular adipose tissue impacting vascular homeostasis // Trends in Endocr. Metab. 2015. V. 26. № 7. Р. 367–375. https://doi.org/10.1016/j.tem.2015.04.003.
- 51. Giordano A., Smorlesi A., Frontini A. et al. White, brown and pink adipocytes: The extraordinary plasticity of the adipose organ // Eur. J. Endocrinol. 2014. V. 170. № 5. Р. R159–R171. https://doi.org/10.1530/EJE-13-0945
- 52. Gomart S., Gaudreau-Ménard C., Jespers P. et al. Leptin-Induced Endothelium-Independent Vasoconstriction in Thoracic Aorta and Pulmonary Artery of Spontaneously Hypertensive Rats: Role of Calcium Channels and Stores // PLoS One. 2017. V. 12. № 1. Р. e0169205. https://doi.org/10.1371/journal.pone.0169205.
- 53. Gossl M., Herrmann J., Tang H. et al. Prevention of vasa vasorumneovascularization attenuates early neointima formation in experimental hypercholesterolemia // Basic Res. Cardiol. 2009. V. 104. № 6. Р. 695–706. https://doi.org/10.1007/s00395-009-0036-0
- 54. Hajer G.R., van Haeften T.W., Visseren F.L. Adipose tissue dysfunction in obesity, diabetes, and vascular diseases // Eur. Heart J. 2008. V. 29. № 24. Р. 2959–2971. https://doi.org/10.1093/eurheartj/ehn387
- 55. Hillock-Watling C., Gotlieb A.I. The pathobiology of perivascular adipose tissue (PVAT), the fourth layer of the blood vessel wall // Cardiovasc. Pathol. 2022. V. 61. Р. 107459. https://doi.org/10.1016/j.carpath.2022.107459
- 56. Huang Y., Tang C., Du J., Jin H. Endogenous Sulfur Dioxide: A New Member of Gasotransmitter Family in the Cardiovascular System // Oxid. Med. Cell Longev. 2016. V. 2016. Р. 8961951. https://doi.org/10.1155/2016/8961951.
- 57. Jamroz-Wiśniewska A., Gertler A., Solomon G. et al. Leptin-induced endothelium-dependent vasorelaxation of peripheral arteries in lean and obese rats: role of nitric oxide and hydrogen sulfide // PLoS One. 2014. V. 9. № 1. Р. e86744. https://doi.org/10.1371/journal.pone.0086744
- 58. Kida M., Sugiyama T., Yoshimoto T., Ogawa Y. Hydrogen sulfide increases nitric oxide production with calcium-dependent activation of endothelial nitric oxide synthase in endothelial cells // Eur. J. Pharm. Sci. 2013. V. 48. № 1–2. Р. 211–215. https://doi.org/10.1016/j.ejps.2012.11.001.
- 59. Klüner L.V., Oikonomou E.K., Antoniades C. Assessing Cardiovascular Risk by Using the Fat Attenuation Index in Coronary CT Angiography // Radiol. Cardiothorac. Imaging. 2021. V. 3. № 1. Р. e200563. https://doi.org/10.1148/ryct.2021200563
- 60. Knock G.A., Snetkov V.A., Shaifta Y. et al. Superoxide constricts rat pulmonary arteries via Rho-kinase-mediated Ca(2+) sensitization // Free Radic. Biol. Med. 2009. V. 46. № 5. Р. 633–642. https://doi.org/10.1016/j.freeradbiomed
- 61. Koenen M., Hill M.A., Cohen P., Sowers J.R. Obesity, Adipose Tissue and Vascular Dysfunction // Circ. Res. 2021. V. 128. № 7. Р. 951–968. https://doi.org/10.1161/ CIRCRESAHA.121.318093
- 62. Kuji I., Imabayashi E., Minagawa A. et al. Brown adipose tissue demonstrating intense FDG uptake in a patient with mediastinal pheochromocytoma // Ann. Nucl. Med. 2008. V. 22. № 3. Р. 231–235. https://doi.org/10.1007/s12149-007-0096-x
- 63. Kwok K.H., Lam K.S., Xu A. Heterogeneity of white adipose tissue: molecular basis and clinical implications // Exp. Mol. Med. 2016. V. 48. № 3. Р. e215. https://doi.org/10.1038/emm.2016.5
- 64. Landsberg L., Aronne L.J., Beilin L.J. et al. Obesity-related hypertension: Pathogenesis, cardiovascular risk, and treatment: a position paper of the The Obesity Society and The American Society of Hypertension // Obesity (Silver Spring). 2013. V. 21. № 1. Р. 8–24. https://doi.org/10.1002/oby.20181.
- 65. Lázaro-Suárez M.L., Domínguez de la Mora I., Rodríguez-Aguilar J.C. et al. Role of Perivascular Adipose Tissue in Aorta Reactivity from Obese and Hyperglycemic CD-1 Mice: New Insights into Perivascular Adipose Tissue // Metabolic syndrome and related disorders. 2023. V. 21. № 2. Р. 101–108. https://doi.org/10.1089/met.2022.0050
- 66. Lee H.Y., Despres J.P., Koh K.K. Perivascular adipose tissue in the pathogenesis of cardiovascular disease // Atherosclerosis. 2013. V. 230. № 2. Р. 177–84. https://doi.org/10.1016/j. atherosclerosis.2013.07.037
- 67. Lee Y.C., Chang H.H., Chiang C.L. et al. Role of perivascular adipose tissue-derived methyl palmitate in vascular tone regulation and pathogenesis of hypertension // Circulation. 2011. V. 124. № 10. Р. 1160–1171. https://doi.org/10.1161/ CIRCULATIONAHA.111.027375
- 68. Lee Y.C., Chang H.H., Liu C.H. et al. Methyl palmitate: A potent vasodilator released in the retina // Invest. Ophthalmol. Vis. Sci. 2010. V. 51. № 9. Р. 4746–4753. https://doi.org/10.1167/iovs.09-5132
- 69. Lenz M., Arts I.C.W., Peeters R.L.M. et al. Adipose tissue in health and disease through the lens of its building blocks // Sci. Rep. 2020. V. 10. № 1. Р. 10433. https://doi.org/10.1038/s41598-020-67177-1
- 70. Liu C.H., Hsu H.J., Tseng T.L. et al. COMTCatalyzed Palmitic Acid Methyl Ester Biosynthesis in Perivascular Adipose Tissue and its Potential Role Against Hypertension // J. Pharmacol. Exp. Ther. 2020. V. 373. № 2. Р. 175–183. https://doi.org/10.1124/jpet.119.263517.
- 71. Löhn M., Dubrovska G., Lauterbach B. et al. Periadventitial fat releases a vascular relaxing factor // FASEB J. 2002. V. 16. № 9. Р. 1057–1063. https://doi.org/10.1096/fj.02-0024com
- 72. Lu Z., Jiang Z., Tang J. et al. Functions and origins of cardiac fat // FEBS J. 2023. V. 290. № 7. Р. 1705–1718. https://doi.org/10.1111/febs.16388
- 73. Lu C., Su L.Y., Lee R.M., Gao Y.J. Mechanisms for perivascular adipose tissue-mediated potentiation of vascular contraction to perivascular neuronal stimulation: The role of adipocyte-derived angiotensin II // Eur. J. Pharmacol. 2010. V. 634. № 1–3. Р. 107–112. https://doi.org/10.1016/j.ejphar.2010.02.006.
- 74. Man A.W.C., Zhou Y., Xia N., Li H. Endothelial Nitric Oxide Synthase in the Perivascular Adipose Tissue // Biomedicines. 2022. V. 10. Р. 1754. https://doi.org/10.3390/biomedicines10071754
- 75. Maniyadath B., Zhang Q., Gupta R.K., Mandrup S. Adipose tissue at single-cell resolution // Cell metabolism. 2023. V. 35. № 3. Р. 386–413. https://doi.org/10.1016/j.cmet.2023.02.002
- 76. Mather K.J., Funahashi T., Matsuzawa Y. et al. Adiponectin, change in adiponectin, and progression to diabetes in the Diabetes Prevention Program // Diabetes. 2008. V. 57. № 4. Р. 980–986. https://doi.org/10.2337/db07-1419
- 77. Mellott E., Faulkner J.L. Mechanisms of leptininduced endothelial dysfunction // Curr. Opin. Nephrol. Hypertens. 2023. V. 32. № 2. Р. 118–123. https://doi.org/10.1097/ MNH.0000000000000867
- 78. Mendizabal Y., Llorens S., Nava E. Vasoactive effects of prostaglandins from the perivascular fat of mesenteric resistance arteries in WKY and SHROB rats // Life Sci. 2013. V. 93. Р. 1023–1032. https://doi.org/10.1016/j.lfs.2013.10.021.
- 79. Mughal A., O'Rourke S.T. Vascular effects of apelin: Mechanisms and therapeutic potential // Pharmacol. Ther. 2018. V. 190. Р. 139–147. https://doi.org/10.1016/j.pharmthera.2018.05.013
- 80. Mustafa A.K., Sikka G., Gazi S.K. et al. Hydrogen sulfide as endothelium-derived hyperpolarizing factor sulfhydrates potassium channels // Circ. Res. 2011. V. 109. № 11. Р. 1259–1268. https://doi.org/10.1161/ CIRCRESAHA.111.240242.
- 81. Neeland I.J., Ross R., Després J.P. et al. Visceral and ectopic fat, atherosclerosis, and cardiometabolic disease: A position statement // The lancet. Diabetes Еndocrinol. 2019. V. 7. № 9. Р. 715–725. https://doi.org/10.1016/S2213-8587 (19)30084-1
- 82. Neves K.B., Lobato N.S., Lopes R.A. et al. Chemerin reduces vascular nitric oxide / cGMP signalling in rat aorta: A link to vascular dysfunction in obesity? // Clinical science. 2014. V. 127. № 2. Р. 111–122. https://doi.org/10.1042/CS20130286.
- 83. Nóbrega N., Araújo N.F., Reis D. et al. Hydrogen peroxide and nitric oxide induce anticontractile effect of perivascular adipose tissue via renin angiotensin system activation // Nitric Oxide. 2019. V. 84. Р. 50–59. https://doi.org/10.1016/j.niox.2018.12.011
- 84. Obradovic M., Sudar-Milovanovic E., Soskic S. et al. Leptin and Obesity: Role and Clinical Implication // Front. Endocrinol. 2021. V. 12. Р. 585887. https://doi.org/10.3389/fendo.2021.585887.
- 85. Oelkrug R., Polymeropoulos E.T., Jastroch M. Brown adipose tissue: Physiological function and evolutionary significance // J. Comp. Physiol B. 2015. V. 185. № 6. Р. 587–606. https://doi.org/10.1007/s00360-015-0907-7.
- 86. Ohashi K., Shibata R., Murohara T., Ouchi N. Role of anti-inflammatory adipokines in obesity-related diseases // TEM. 2014. V. 25. № 7. Р. 348–355. https://doi.org/10.1016/j.tem.2014.03.009
- 87. Oikonomou E.K., Marwan M., Desai M.Y. et al. Non-invasive detection of coronary inf lammation using computed tomography and prediction of residual cardiovascular risk (the CRISP CT study): A post-hoc analysis of prospective outcome data // Lancet. 2018. V. 392. № 10151. Р. 929–939. https://doi.org/10.1016/S0140-6736 (18)31114-0
- 88. Padilla J., Jenkins N.T., Vieira-Potter V.J., Laughlin M.H. Divergent phenotype of rat thoracic and abdominal perivascular adipose tissues // Am. J. Рhysiol. Reg. Integr. Comp. Physiol. 2013. V. 304. № 7. Р. R543–R552. https://doi.org/10.1152/ajpregu.00567.2012.
- 89. Pan X., Kaminga A.C., Wen S.W., Acheampong K., Liu A. Omentin-1 in diabetes mellitus: A systematic review and meta-analysis // PloS one. 2019. V. 14. № 12. Р. e0226292. https://doi.org/10.1371/journal.pone.0226292
- 90. Phillips S.A., Somberg L.B., Hatoum O.A., Gutterman D.D. Mechanisms of hydrogen peroxide induced vasoconstriction in human adipose resistance arteries // FASEB J. 2007. V. 21. Р. A491. https://doi.org/10.1096/fasebj.21.5.A491-c.
- 91. Police S.B., Thatcher S.E., Charnigo R. et al. Obesity promotes inflammation in periaortic adipose tissue and angiotensin II-induced abdominal aortic aneurysm formation // Arterioscl. Thromb. Vasc. Biol. 2009. V. 29. № 10. Р. 1458–1464. https://doi.org/10.1161/ATVBAHA.109.192658
- 92. Rahmouni K. Obesity-associated hypertension: Recent progress in deciphering the pathogenesis // Hypertension. 2014. V. 64. № 2. Р. 215–221. https://doi.org/10.1161/ HYPERTENSIONAHA.114.00920.
- 93. Reilly S.M., Saltiel A.R. Adapting to obesity with adipose tissue inflammation // Nat. Rev. Endocrinol. 2017. V. 13. Р. 633–643. https://doi.org/10.1038/nrendo.2017.90.
- 94. Rikitake Y. The apelin/APJ system in the regulation of vascular tone: friend or foe? // J. Вiochem. 2021. V. 169. № 4. Р. 383–386. https://doi.org/10.1093/jb/mvaa129
- 95. Romacho T., Valencia I., Ramos-González M. et al. Visfatin/eNampt induces endothelial dysfunction in vivo: A role for Toll-Like Receptor 4 and NLRP3 inflammasome // Sci. Rep. 2020. V. 10. Р. 5386. https://doi.org/10.1038/s41598-020-62190-w
- 96. Sahin A.S., Bariskaner H. The mechanisms of vasorelaxant effect of leptin on isolated rabbit aorta // Fundam. Clin. Pharmacol. 2007. V. 21. № 6. Р. 595–600. https://doi.org/10.1111/j.1472-8206.2007.00541.x
- 97. Sahin A.S., Bariskaner H., Gökbel H., Okudan N. The dual effects of leptin on aortic rings with and without endothelium isolated from streptozotocin-induced diabetic rats // Methods Find. Exp. Clin. Pharmacol. 2009. V. 31. № 5. Р. 325–329. https://doi.org/10.1358/mf.2009.31.5.1380464.
- 98. Saito T., Kurazumi H., Suzuki R. et al. Perivascular Adipose Tissue Is a Major Source of Nitric Oxide in Saphenous Vein Grafts Harvested via the NoTouch Technique // J. Am. Hear. Assoc. 2022. V. 11. Р. e020637. https://doi.org/10.1161/JAHA.120.020637.
- 99. Saito M., Okamatsu-Ogura Y., Matsushita M. et al. High incidence of metabolically active brown adipose tissue in healthy adult humans: effects of cold exposure and adiposity // Diabetes. 2009. V. 58. № 7. Р. 1526–1531. https://doi.org/10.2337/db09-0530.
- 100. Santiago E., Climent B., Muñoz M. et al. Hydrogen peroxide activates store-operated Ca(2+) entry in coronary arteries // Br. J. Рharmacol. 2015. V. 172. № 22. Р. 5318–5332. https://doi.org/10.1111/bph.13322.
- 101. Santos R.A., Ferreira A.J., Pinheiro S.V. et al. Angiotensin-(1-7) and its receptor as a potential targets for new cardiovascular drugs // Expert. Opin. Investig. Drugs. 2005. V. 14. № 8. Р. 1019–1031. https://doi.org/10.1517/13543784.14.8.1019
- 102. Santos R.A., Sampaio W.O., Alzamora A.C. et al. The ACE2/Angiotensin-(1-7)/MAS Axis of the Renin-Angiotensin System: Focus on Angiotensin-(1-7) // Physiol. Rev. 2018. V. 98. № 1. Р. 505–553. https://doi.org/10.1152/physrev.00023.2016
- 103. Schleifenbaum J., Köhn C., Voblova N. et al. Systemic peripheral artery relaxation by KCNQ channel openers and hydrogen sulfide // J. Hypertens. 2010. V. 28. № 9. Р. 1875–1882. https://doi.org/10.1097/ HJH.0b013e32833c20d5
- 104. Schroeter M.R., Eschholz N., Herzberg S. et al. Leptin-dependent and leptin-independent paracrine effects of perivascular adipose tissue on neointima formation // Arterioscler. Thromb. Vasc. Biol. 2013. V. 33. № 5. Р. 980–987. https://doi.org/10.1161/ATVBAHA.113.301393
- 105. Sena C.M., Pereira A., Fernandes R. et al. Adiponectin improves endothelial function in mesenteric arteries of rats fed a high-fat diet: Role of perivascular adipose tissue // Br. J. Pharmacol. 2017. V. 174. № 20. Р. 3514–3526. https://doi.org/10.1111/bph.13756
- 106. Shabalina I.G., Ost M., Petrovic N. et al. Uncoupling protein-1 is not leaky // Biochim. Biophys. Acta. 2010. V. 1797. Р. 773–784. https://doi.org/10.1016/j.bbabio.2010.04.007
- 107. Small H.Y., McNeilly S., Mary S. et al. Resistin Mediates Sex-Dependent Effects of Perivascular Adipose Tissue on Vascular Function in the Shrsp // Scientific reports. 2019. V. 9. № 1. Р. 6897. https://doi.org/10.1038/s41598-019-43326-z
- 108. Soltis E.E., Cassis L.A. Influence of perivascular adipose tissue on rat aortic smooth muscle responsiveness // Clin. Exp. Hypertens. A. 1991. V. 13. № 2. Р. 277–296. https://doi.org/10.3109/10641969109042063
- 109. Stanek E., Czamara K. Imaging of perivascular adipose tissue in cardiometabolic diseases by Raman spectroscopy: Towards single-cell analysis // Biochim. Biophys. Acta Mol. Cell. Biol. Lipids. 2024. V. 1869. № 5. Р. 159484. https://doi.org/10.1016/j.bbalip.2024.159484.
- 110. Stastny J., Bienertova-Vasku J., Vasku A. Visfatin and its role in obesity development // Diabetes Metab. Syndr. 2012. V. 6. № 2. Р. 120–124. https://doi.org/10.1016/j.dsx.2012.08.011
- 111. Sun C., Yu W., Lv B. et al. Role of hydrogen sulfide in sulfur dioxide production and vascular regulation // PloS One. 2022. V. 17. № 3. Р. e0264891. https://doi.org/10.1371/journal.pone.0264891
- 112. Szasz T., Webb R.C. (2012) Perivascular adipose tissue: More than just structural support // Clin. Sci. V. 122. № 1. Р. 1–12. https://doi.org/10.1042/CS20110151
- 113. Van Dam A.D., Boon M.R., Berbée J.F.P. et al. Targeting white, brown and perivascular adipose tissue in atherosclerosis development // Eur. J. Pharmacol. 2017. V. 816. Р. 82–92. https://doi.org/10.1016/j.ejphar.2017.03.051
- 114. Van Gaal L.F., Mertens I.L., De Block C.E. Mechanisms linking obesity with cardiovascular disease // Nature. 2006. V. 444. № 7121. Р. 875–880. https://doi.org/10.1038/nature05487
- 115. Victorio J.A., Davel A.P. Perivascular Adipose Tissue Oxidative Stress on the Pathophysiology of Cardiometabolic Diseases // Curr. Hypertens. Rev. 2020. V. 16. № 3. Р. 192–200. https://doi.org/10.2174/15734021156661904101 53634
- 116. Victorio J.A., Fontes M.T., Rossoni L.V., Davel A.P. Different Anti-Contractile Function and Nitric Oxide Production of Thoracic and Abdominal Perivascular Adipose Tissues // Frontiers in physiology. 2016. V. 7. Р. 295. https://doi.org/10.3389/fphys.2016.00295
- 117. Villarroya F., Cereijo R., Villarroya J., Giralt M. Brown adipose tissue as a secretory organ // Nat Rev Endocrinol. 2017. V. 13. № 1. Р. 26–35. https://doi.org/10.1038/nrendo.2016.136.
- 118. Wabel E.A., Krieger-Burke T., Watts S.W. Vascular chemerin from PVAT contributes to norepinephrine and serotonin-induced vasoconstriction and vascular stiffness in a sexdependent manner // Am. J. Physiol. 2024. V. 327. № 6. P. H1577–H1589. https://doi.org/10.1152/ajpheart.00475.2024
- 119. Wang J., Gao Y., Lin F. et al. Omentin-1 attenuates lipopolysaccharide (LPS)-induced U937 macrophages activation by inhibiting the TLR4/MyD88/NF-κB signaling // Arch. Вiochem. Вiophys. 2020. V. 679. Р. 108187. https://doi.org/10.1016/j.abb.2019.108187
- 120. Wang N., Kuczmanski A., Dubrovska G., Gollasch M. Palmitic Acid Methyl Ester and Its Relation to Control of Tone of Human Visceral Arteries and Rat Aortas by Perivascular Adipose Tissue // Front. Physiol. 2018. V. 9. Р. 583. https://doi.org/10.3389/fphys.2018.00583
- 121. Wang P., Xu T.Y., Guan Y.F. et al. Perivascular adipose tissue-derived visfatin is a vascular smooth muscle cell growth factor: role of nicotinamide mononucleotide // Cardiovasc. Res. 2009. V. 81. № 2. Р. 370–380. https://doi.org/10.1093/cvr/cvn288
- 122. Weston A.H., Egner I., Dong Y. et al. Stimulated release of a hyperpolarizing factor (ADHF) from mesenteric artery perivascular adipose tissue: Involvement of myocyte BKCa channels and adiponectin // Br. J. Pharmacol. 2013. V. 169. № 7. Р. 1500–1509. https://doi.org/10.1111/bph.12157
- 123. Withers S.B., Bussey C.E., Saxton S.N. et al. Mechanisms of adiponectin-associated perivascular function in vascular disease // Arterioscler. Thromb. Vasc. Biol. 2014. V. 34. № 8. Р. 1637–1642. https://doi.org/10.1038/srep4457110.1161/ ATVBAHA.114.303031
- 124. Withers S.B., Forman R., Meza-Perez S. et al. Eosinophils are key regulators of perivascular adipose tissue and vascular functionality // Scientific reports. 2017. V. 7. Р. 44571. https://doi.org/10.1038/srep44571
- 125. Xia N., Horke S., Habermeier A. et al. Uncoupling of Endothelial Nitric Oxide Synthase in Perivascular Adipose Tissue of DietInduced Obese Mice // Arterioscler. Thromb. Vasc. Biol. 2016. V. 36. № 1. Р. 78–85. https://doi.org/10.1161/ATVBAHA.115.306263
- 126. Xia N., Li H. The role of perivascular adipose tissue in obesity-induced vascular dysfunction // Br. J. Pharmacol. 2017. V. 174. № 20. Р. 3425–3442. https://doi.org/10.1111/bph.13650.
- 127. Yamawaki H., Hara N., Okada M., Hara Y. Visfatin causes endothelium-dependent relaxation in isolated blood vessels // Biochem. Biophys. Res. Commun. 2009. V. 383. № 4. Р. 503–508. https://doi.org/10.1016/j.bbrc.2009.04.074
- 128. Yamawaki H., Tsubaki N., Mukohda M. et al. Omentin, a novel adipokine, induces vasodilation in rat isolated blood vessels // Biochem. Biophys. Res. Comm. 2010. V. 393. № 4. Р. 668–672. https://doi.org/10.1016/j.bbrc.2010.02.053
- 129. Yang T., Du Y. Distinct roles of central and peripheral prostaglandin E2 and EP subtypes in blood pressure regulation // Am. J. Hypertens. 2012. V. 25. Р. 1042–1049. https://doi.org/10.1038/ajh.2012.67.
- 130. Yao Q., Huang Y., Liu A.D. et al. The vasodilatory effect of sulfur dioxide via SGC/ cGMP/PKG pathway in association with sulfhydryl-dependent dimerization. //Am. J. Physiol. Regul. Integr. Comp. Physiol. 2016. V. 310. № 11. Р. R1073-80. https://doi.org/10.1152/ajpregu.00101.2015
- 131. Yudkin J.S., Eringa E., Stehouwer C.D. ‘Vasocrine’ signalling from perivascular fat: Amechanism linking insulin resistance to vascular disease // Lancet. 2005. V. 365. Р. 1817–1820. https://doi.org/10.1016/S0140-6736 (05)66585-3
- 132. Zamanian M.Y., Maleki S., Oghenemaro E.F. et al. Omentin-1 as a promising biomarker and therapeutic target in hypertension and heart failure: A comprehensive review // Naun.Schm. Arch. Pharmacol. 2025. 10.1007/s00210025-04008-y. https://doi.org/10.1007/s00210-025-04008-y
- 133. Zhang H., Huang Y., Bu D. et al. Endogenous sulfur dioxide is a novel adipocyte-derived inflammatory inhibitor // Sci. Rep. 2016. V. 6. Р. 27026. https://doi.org/10.1038/srep27026
- 134. Zhang Y., Proenca R., Maffei M. et al. Positional Cloning of the Mouse Obese Gene and its Human Homologue // Nature. 1994. V. 372. Р. 425–432. https://doi.org/10.1038/372425a0
- 135. Zhang Y.Y., Shi Y.N., Zhu N. et al. PVAT targets VSMCs to regulate vascular remodelling: Angel or demon // Journal of drug targeting / 2021. V. 29. № 5. Р. 467–475. https://doi.org/10.1080/1061186X.2020.1859515