ОФУспехи физиологических наук Progress in Physiological Science

  • ISSN (Print) 0301-1798
  • ISSN (Online) 3034-6118

Внеклеточный матрикс как фактор регуляции физиологического микроокружения клетки

Код статьи
10.31857/S0301179824010033-1
DOI
10.31857/S0301179824010033
Тип публикации
Обзор
Статус публикации
Опубликовано
Авторы
Том/ Выпуск
Том 55 / Номер выпуска 1
Страницы
16-30
Аннотация
Внеклеточный матрикс (ВКM) представляет собой динамическую трехмерную сеть макромолекул, которая обеспечивает структурную поддержку клеток и тканей. За последние десятилетия накоплен значительный массив данных, показывающих, что ВКM играет также ключевую регуляторную роль. Структурные компоненты ВКМ (белки, гликопротеины, протеогликаны, гликозаминогликаны), комплекс ремоделирующих молекул (ферменты и их ингибиторы), депонируемые / высвобождаемые биологически активные медиаторы образуют единую функциональную систему, которая обеспечивает физиологический гомеостаз в тканях. ВКM может постоянно адаптироваться под действием механических, биохимических, физических сигналов, обеспечивая возможность конфигурирования различных тканей в соответствии с требованиями к их функциям. В обзоре кратко представлены современные данные о структурных компонентах ВКМ. Специальное внимание уделено аспектам, связанным с депонирующей функцией, а также биологически активным продуктам, образующимся в результате физиологического ремоделирования ВКМ. Обсуждена роль важнейшего физического фактора микроокружения – тканевого уровня кислорода в физиологию ВКМ клеток стромального дифферона.
Ключевые слова
внеклеточный матрикс микроокружение физиологическая гипоксия ремоделирование ткани биологически активные медиаторы матрикины
Дата публикации
14.09.2025
Год выхода
2025
Всего подписок
0
Всего просмотров
9

Библиография

  1. 1. Матвеева Д.К., Андреева Е.Р. Регуляторная активность децеллюляризированного матрикса мультипотентных мезенхимных стромальных клеток // Цитология. 2020. Т. 62. № 10. C. 699–715. https://doi.org/10.31857/S004137712010003X
  2. 2. Akalu A., Brooks P.C. Matrix, extracellular and interstitial // Encyclopedia of molecular cell biology and molecular medicine / ed. Meyers R.A. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2006. P. mcb.200400091. https://doi.org/10.1002/3527600906.mcb.200400091
  3. 3. Alon R., Cahalon L., Hershkoviz. et al. TNF-alpha binds to the N-terminal domain of fibronectin and augments the beta 1-integrin-mediated adhesion of CD4+ T lymphocytes to the glycoprotein // J. Immunol. 1994. V. 152. № 3. P. 1304–1313.
  4. 4. Antebi B., Rodriguez L.A. 2nd, Walker K.P. 3rd, et al. Short-term physiological hypoxia potentiates the therapeutic function of mesenchymal stem cells // Stem. Cell. Res. Ther. 2018. V. 9(1). P. 265. https://doi.org/10.1186/s13287-018-1007-x
  5. 5. Ariel A., Hershkoviz R., Cahalon L. et al. Induction of T cell adhesion to extracellular matrix or endothelial cell ligands by soluble or matrix-bound interleukin-7 // Eur. J. Immunol. 1997. V. 27. № 10. P. 2562–2570. https://doi.org/10.1002/eji.1830271015
  6. 6. Aro E., Khatri R., Gerard-O’Riley R. et al. Hypoxia-inducible Factor-1 (HIF-1) but Not HIF-2 Is Essential for Hypoxic Induction of Collagen Prolyl 4-Hydroxylases in Primary Newborn Mouse Epiphyseal Growth Plate Chondrocytes // J. Biol. Chem. 2012. V. 287. № 44. P. 37134–37144. https://doi.org/10.1074/jbc.M112.352872
  7. 7. Arroyo A.G., Iruela-Arispe M.L. Extracellular matrix, inflammation, and the angiogenic response // CVR. 2010. V. 86. № 2. P. 226–235. https://doi.org/10.1093/cvr/cvq049
  8. 8. Aumailley M., Smyth N. The role of laminins in basement membrane function // J. Anatomy. 1998. V. 193. № 1. P. 1–21. https://doi.org/10.1046/j.1469-7580.1998.19310001.x
  9. 9. Bai T., Chen C.-C., Lau L.F. Matricellular protein CCN1 activates a proinflammatory genetic program in murine macrophages // J. Immunol. 2010. V. 184. № 6. P. 3223–3232. https://doi.org/10.4049/jimmunol.0902792
  10. 10. Bányai L., Sonderegger P., Patthy L. Agrin Binds BMP2, BMP4 and TGFβ1 // PLoS ONE / ed. Kobe B. 2010. V. 5. № 5. P. e10758. https://doi.org/10.1371/journal.pone.0010758
  11. 11. Baril P., Gangeswaran R., Mahon P.C., et al. Periostin promotes invasiveness and resistance of pancreatic cancer cells to hypoxia-induced cell death: role of the β4 integrin and the PI3k pathway // Oncogene. 2007. V. 26. № 14. P. 2082–2094. https://doi.org/10.1038/sj.onc.1210009
  12. 12. Barker H.E., Cox T.R., Erler J.T. The rationale for targeting the LOX family in cancer // Nat. Rev. Cancer. 2012. V. 12. № 8. P. 540–552. https://doi.org/10.1038/nrc3319
  13. 13. Berg J.T., Breen E.C., Fu Z. et al. Alveolar hypoxia increases gene expression of extracellular matrix proteins and Platelet-derived Growth Factor-B in lung parenchyma // Am. J. Respir. Crit. Care. Med. 1998. V. 158. № 6. P. 1920–1928. https://doi.org/10.1164/ajrccm.158.6.9804076
  14. 14. Beyer C., Schett G., Gay S., et al. Hypoxia. Hypoxia in the pathogenesis of systemic sclerosis // Arthritis Res. Ther. 2009. V. 11. № 2. P. 220. https://doi.org/10.1186/ar2598
  15. 15. Braga C.L., Da Silva L.R., Santos R.T. et al. Proteomics profile of mesenchymal stromal cells and extracellular vesicles in normoxic and hypoxic conditions // Cytotherapy. 2022. V. 24. № 12. P. 1211–1224. https://doi.org/10.1016/j.jcyt.2022.08.009
  16. 16. Büchler P., Reber H.A., Tomlinson J.S., et al. Transcriptional regulation of urokinase-type plasminogen activator receptor by hypoxia-inducible factor 1 is crucial for invasion of pancreatic and liver cancer // Neoplasia. 2009. V. 11. № 2. P. 196-IN12. https://doi.org/10.1593/neo.08734
  17. 17. Buravkova L.B., Andreeva E.R., Gogvadze V. et al. Mesenchymal stem cells and hypoxia: Where are we? // Mitochondrion. 2014. V. 19. P. 105–112. https://doi.org/10.1016/j.mito.2014.07.005
  18. 18. Buravkova L.B., Rylova Y.V., Andreeva E.R. et al. Low ATP level is sufficient to maintain the uncommitted state of multipotent mesenchymal stem cells // Biochimica et Biophysica Acta (BBA) – General Subjects. 2013. V. 1830. № 10. P. 4418–4425. https://doi.org/10.1016/j.bbagen.2013.05.029
  19. 19. Campbell I.D., Humphries M.J. Integrin structure, activation, and interactions // Cold. Spring. Harb. Perspect. Biol. 2011. V. 3. № 3. P. a004994–a004994. https://doi.org/10.1101/cshperspect.a004994
  20. 20. Carreau A., Hafny-Rahbi B.E., Matejuk A., et al. Why is the partial oxygen pressure of human tissues a crucial parameter? Small molecules and hypoxia // J. Cell. Mol. Med. 2011. V. 15. № 6. P. 1239–1253. https://doi.org/10.1111/j.1582-4934.2011.01258.x
  21. 21. Chan C.K., Rolle M.W., Potter-Perigo S. et al. Differentiation of cardiomyocytes from human embryonic stem cells is accompanied by changes in the extracellular matrix production of versican and hyaluronan // J. Cell. Biochem. 2010. V. 111. № 3. P. 585–596. https://doi.org/10.1002/jcb.22744
  22. 22. Chen X.D., Fisher L.W., Robey P.G. et al. The small leucine‐rich proteoglycan biglycan modulates BMP‐4‐induced osteoblast differentiation // FASEB j. 2004. V. 18. № 9. P. 948–958. https://doi.org/10.1096/fj.03-0899com
  23. 23. Choi J.Y., Jang Y.S., Min S.Y. et al. Overexpression of MMP-9 and HIF-1α in breast cancer cells under hypoxic conditions // J. Breast Cancer. 2011. V. 14. № 2. P. 88. https://doi.org/10.4048/jbc.2011.14.2.88
  24. 24. Chung M.I., Miao M., Stahl R.J. et al. Sequences and domain structures of mammalian, avian, amphibian and teleost tropoelastins: Clues to the evolutionary history of elastins // Matrix. Biol. 2006. V. 25. № 8. P. 492–504. https://doi.org/10.1016/j.matbio.2006.08.258
  25. 25. Cowden Dahl K.D., Robertson S.E., Weaver V.M. et al. Hypoxia-inducible Factor regulates αvβ3 integrin cell surface expression // MBoC. 2005. V. 16. № 4. P. 1901–1912. https://doi.org/10.1091/mbc.e04-12-1082
  26. 26. Cox T.R., Bird D., Baker A.M. et al. LOX-mediated collagen crosslinking is responsible for fibrosis-enhanced metastasis // Cancer. Res. 2013. V. 73. № 6. P. 1721–1732. https://doi.org/10.1158/0008-5472.CAN-12-2233
  27. 27. Daley W.P., Yamada K.M. ECM-modulated cellular dynamics as a driving force for tissue morphogenesis // Curr. Opin. Genet. Dev. 2013. V. 23. № 4. P. 408–414. https://doi.org/10.1016/j.gde.2013.05.005
  28. 28. Davis G.E., Bayless K.J., Davis M.J. et al. Regulation of tissue injury responses by the exposure of matricryptic sites within extracellular matrix molecules // Am. J. Pathol. 2000. V. 156. № 5. P. 1489–1498. https://doi.org/10.1016/S0002-9440 (10)65020-1
  29. 29. De Laporte L., Rice J.J., Tortelli F. et al. Tenascin C promiscuously binds growth factors via its fifth fibronectin type III-like domain // PLoS ONE / ed. Engler A.J. 2013. V. 8. № 4. P. e62076. https://doi.org/10.1371/journal.pone.0062076
  30. 30. Deschene K., Céleste C., Boerboom D. et al. Hypoxia regulates the expression of extracellular matrix associated proteins in equine dermal fibroblasts via HIF1 // J. Dermatol. Sci. 2012. V. 65. № 1. P. 12–18. https://doi.org/10.1016/j.jdermsci.2011.09.006
  31. 31. Desnoyers L., Arnott D., Pennica D. WISP-1 binds to decorin and biglycan // J. Biol. Chem. 2001. V. 276. № 50. P. 47599–47607. https://doi.org/10.1074/jbc.M108339200
  32. 32. Discher D.E., Mooney D.J., Zandstra P.W. Growth factors, matrices, and forces combine and control stem cells // Science. 2009. V. 324. № 5935. P. 1673–1677. https://doi.org/10.1126/science.1171643
  33. 33. Dos Santos F., Andrade P.Z., Boura J.S., et al. Ex vivo expansion of human mesenchymal stem cells: A more effective cell proliferation kinetics and metabolism under hypoxia // J. Cell. Physiol. 2009. P. n/a–n/a. https://doi.org/10.1002/jcp.21987
  34. 34. Droguett R., Cabello-Verrugio C., Riquelme C., et al. Extracellular proteoglycans modify TGF-β bio-availability attenuating its signaling during skeletal muscle differentiation // Matrix. Biol. 2006. V. 25. № 6. P. 332–341. https://doi.org/10.1016/j.matbio.2006.04.004
  35. 35. Eisinger-Mathason T.S.K., Zhang M., Qiu Q. et al. Hypoxia-dependent modification of collagen networks promotes sarcoma metastasis // Cancer. Discov. 2013. V. 3. № 10. P. 1190–1205. https://doi.org/10.1158/2159-8290.CD-13-0118
  36. 36. Emerson R.O., Sage E.H., Ghosh J.G., Clark J.I. Chaperone-like activity revealed in the matricellular protein SPARC // J. Cell. Biochem. 2006. V. 98. № 4. P. 701–705. https://doi.org/10.1002/jcb.20867
  37. 37. Engler A.J., Sen S., Sweeney H.L., Discher D.E. Matrix elasticity directs stem cell lineage specification // Cell. 2006. Vol. 126. № 4. P. 677–689. https://doi.org/10.1016/j.cell.2006.06.044
  38. 38. Evanko S.P., Potter-Perigo S., Bollyky P.L. et al. Hyaluronan and versican in the control of human T-lymphocyte adhesion and migration // Matrix. Biol. 2012. V. 31. № 2. P. 90–100. https://doi.org/10.1016/j.matbio.2011.10.004
  39. 39. Fehrer C., Brunauer R., Laschober G. et al. Reduced oxygen tension attenuates differentiation capacity of human mesenchymal stem cells and prolongs their lifespan: Mesenchymal stem cells and reduced oxygen tension // Aging. Cell. 2007. V. 6. № 6. P. 745–757. https://doi.org/10.1111/j.1474-9726.2007.00336.x
  40. 40. Fhayli W., Boëté Q., Harki O. et al. Rise and fall of elastic fibers from development to aging. Consequences on arterial structure-function and therapeutical perspectives // Matrix. Biol. 2019. V. 84. P. 41–56. https://doi.org/10.1016/j.matbio.2019.08.005
  41. 41. Fonta C.M., Arnoldini S., Jaramillo D. et al. Fibronectin fibers are highly tensed in healthy organs in contrast to tumors and virus-infected lymph nodes // Matrix. Biol. Plus. 2020. V. 8. P. 100046. https://doi.org/10.1016/j.mbplus.2020.100046.
  42. 42. Frantz C., Stewart K.M., Weaver V.M. The extracellular matrix at a glance // J. Cell. Sci. 2010. V. 123. № 24. P. 4195–4200. https://doi.org/10.1242/jcs.023820
  43. 43. Garg P., Yang S., Liu A. et al. Thrombospondin-1 opens the paracellular pathway in pulmonary microvascular endothelia through EGFR/ErbB2 activation // Am. J. Physiol. Lung. Cell. Mol. Physiol. 2011. V. 301. № 1. P. L79–L90. https://doi.org/10.1152/ajplung.00287.2010
  44. 44. Gattazzo F., Urciuolo A., Bonaldo P. Extracellular matrix: A dynamic microenvironment for stem cell niche // Biochim. Biophys. Acta. 2014. V. 1840. № 8. P. 2506–2519. https://doi.org/10.1016/j.bbagen.2014.01.010
  45. 45. Geiger B., Yamada K.M. Molecular architecture and function of matrix adhesions // Cold. Spring. Harb. Perspect. Biol. 2011. V. 3. № 5. P. a005033. https://doi.org/10.1101/cshperspect.a005033
  46. 46. Gilkes D.M., Semenza G.L., Wirtz D. Hypoxia and the extracellular matrix: drivers of tumour metastasis // Nat. Rev. Cancer. 2014. V. 14. № 6. P. 430–439. https://doi.org/10.1038/nrc3726
  47. 47. Gillan L., Matei D., Fishman D.A. et al. Periostin secreted by epithelial ovarian carcinoma is a ligand for alpha(V)beta(3) and alpha(V)beta(5) integrins and promotes cell motility // Cancer. Res. 2002. V. 62. № 18. P. 5358–5364
  48. 48. Gillies R.J., Gatenby R.A. Hypoxia and adaptive landscapes in the evolution of carcinogenesis // Cancer. Metastasis. Rev. 2007. Vol. 26. № 2. P. 311–317. https://doi.org/10.1007/s10555-007-9065-z
  49. 49. Gregory K.E., Ono R.N., Charbonneau N.L. et al. The prodomain of BMP-7 targets the BMP-7 complex to the extracellular matrix // J. Biol. Chem. 2005. V. 280. № 30. P. 27970–27980. https://doi.org/10.1074/jbc.M504270200
  50. 50. Hakuno D., Kimura N., Yoshioka M. et al. Periostin advances atherosclerotic and rheumatic cardiac valve degeneration by inducing angiogenesis and MMP production in humans and rodents // J. Clin. Invest. 2010. V. 120. № 7. P. 2292–2306. https://doi.org/10.1172/JCI40973
  51. 51. Halász K., Kassner A., Mörgelin M. et al. COMP acts as a catalyst in collagen fibrillogenesis // J. Biol. Chem. 2007. V. 282. № 43. P. 31166–31173. https://doi.org/10.1074/jbc.M705735200
  52. 52. Halper J., Kjaer M. Basic components of connective tissues and extracellular matrix: elastin, fibrillin, fibulins, fibrinogen, fibronectin, laminin, tenascins and thrombospondins // Progress in Heritable Soft Connective Tissue Diseases / ed. Halper J. Dordrecht: Springer Netherlands, 2014. V. 802. P. 31–47. https://doi.org/10.1007/978-94-007-7893-1_3
  53. 53. Haque N., Rahman M.T., Abu Kasim N.H. et al. Hypoxic culture conditions as a solution for mesenchymal stem cell based regenerative therapy // Sci. World J. 2013. V. 2013. P. 1–12. https://doi.org/10.1155/2013/632972
  54. 54. Hershkoviz R., Goldkorn I., Lider O. Tumour necrosis factor-alpha interacts with laminin and functions as a pro-adhesive cytokine // Immunology. 1995. V. 85. № 1. P. 125–130.
  55. 55. Heymann F., Tacke F. Immunology in the liver – from homeostasis to disease // Nat. Rev. Gastroenterol. Hepatol. 2016. V. 13. № 2. P. 88–110. https://doi.org/10.1038/nrgastro.2015.200
  56. 56. Hinz B. The extracellular matrix and transforming growth factor-β1: Tale of a strained relationship // Matrix. Biol. 2015. Vol. 47. P. 54–65. https://doi.org/10.1016/j.matbio.2015.05.006
  57. 57. Holmes D.F., Lu Y., Starborg T. et al. Collagen fibril assembly and function // Curr. Top. Dev. Biol. 2018. V. 130. P. 107–142. https://doi.org/10.1016/bs.ctdb.2018.02.004
  58. 58. Hu X., Wu R., Shehadeh L.A. et al. Severe hypoxia exerts parallel and cell-specific regulation of gene expression and alternative splicing in human mesenchymal stem cells // BMC Genomics. 2014. V. 15. № 1. P. 303. https://doi.org/10.1186/1471-2164-15-303
  59. 59. Huang W., Chiquet-Ehrismann R., Moyano J.V. et al. Interference of tenascin-C with syndecan-4 binding to fibronectin blocks cell adhesion and stimulates tumor cell proliferation // Cancer. Res. 2001. V. 61. № 23. P. 8586–8594.
  60. 60. Iozzo R.V., Murdoch A.D. Proteoglycans of the extracellular environment: clues from the gene and protein side offer novel perspectives in molecular diversity and function // FASEB. J. 1996. V. 10. № 5. P. 598–614.
  61. 61. Ivanovic Z. Hypoxia or in situ normoxia: The stem cell paradigm // J. Cell. Physiol. 2009. V. 21. № 2. P. 271–275. https://doi.org/10.1002/jcp.21690
  62. 62. Jariwala N., Ozols M., Bell M. et al. Matrikines as mediators of tissue remodeling // Adv. Drug. Deliv. Rev. 2022. V. 185. P. 114240. https://doi.org/10.1016/j.addr.2022.114240
  63. 63. Järvinen T.A.H., Prince S. Decorin: a growth factor antagonist for tumor growth inhibition // Biomed. Res. Int. 2015. V. 2015. P. 1–11. https://doi.org/10.1155/2015/654765
  64. 64. Jean C., Gravelle P., Fournie J.J. et al. Influence of stress on extracellular matrix and integrin biology // Oncogene. 2011. V. 30. № 24. P. 2697–2706. https://doi.org/10.1038/onc.2011.27
  65. 65. Johansson M.W., Annis D.S., Mosher D.F. α M β 2 Integrin–mediated adhesion and motility of IL-5–stimulated eosinophils on periostin // Am. J. Respir. Cell. Mol. Biol. 2013. V. 48. № 4. P. 503–510. https://doi.org/10.1165/rcmb.2012-0150OC
  66. 66. Kadler K.E., Baldock C., Bella J., Boot-Handford R.P. Collagens at a glance // J. Cell Sci. 2007. V. 120. № 12. P. 1955–1958. https://doi.org/10.1242/jcs.03453
  67. 67. Kalluri R. The biology and function of fibroblasts in cancer // Nat. Rev. Cancer. 2016. V. 16. № 9. P. 582–598. https://doi.org/10.1038/nrc.2016.73
  68. 68. Kalluri R., Cantley L.G., Kerjaschki D., Neilson E.G. Reactive oxygen species expose cryptic epitopes associated with autoimmune goodpasture syndrome // J. Biol. Chem. 2000. V. 275. № 26. P. 20027–20032. https://doi.org/10.1074/jbc.M904549199
  69. 69. Karamanos N.K., Piperigkou Z., Theocharis A.D. et al. Proteoglycan chemical diversity drives multifunctional cell regulation and therapeutics // Chem. Rev. 2018. V. 118. № 18. P. 9152–9232. https://doi.org/10.1021/acs.chemrev.8b00354
  70. 70. Karamanos N.K., Theocharis A.D., Piperigkou Z. et al. A guide to the composition and functions of the extracellular matrix // FEBS J. 2021. V. 288. № 24. P. 6850–6912. https://doi.org/10.1111/febs.15776
  71. 71. Khan A.A., Bose C., Yam L.S., Soloski M.J., Rupp F. Physiological regulation of the immunological synapse by agrin // Science. 2001. V. 292. № 5522. P. 1681–1686. https://doi.org/10.1126/science.1056594
  72. 72. Khan W.S., Adesida A.B., Tew S.R. et al. Bone marrow-derived mesenchymal stem cells express the pericyte marker 3G5 in culture and show enhanced chondrogenesis in hypoxic conditions: BMSs express pericyte markers in culture // J. Orthop. Res. 2010. V. 28. № 6. P. 834–840. https://doi.org/10.1002/jor.21043
  73. 73. Kirkness M.W., Lehmann K., Forde N.R. Mechanics and structural stability of the collagen triple helix // Cur. Op. Chem. Biol. 2019. V. 53. P. 98–105. https://doi.org/10.1016/j.cbpa.2019.08.001
  74. 74. Kühn B., Del Monte F., Hajjar R.J. et al. Periostin induces proliferation of differentiated cardiomyocytes and promotes cardiac repair // Nat. Med. 2007. V. 13. № 8. P. 962–969. https://doi.org/10.1038/nm1619
  75. 75. Kumar P., Satyam A., Cigognini D. et al. Low oxygen tension and macromolecular crowding accelerate extracellular matrix deposition in human corneal fibroblast culture // J. Tissue. Eng. Regen. Med. 2018. V. 12. № 1. P. 6–18. https://doi.org/10.1002/term.2283
  76. 76. Lane S.W., Williams D.A., Watt F.M. Modulating the stem cell niche for tissue regeneration // Nat. Biotechnol. 2014. V. 32. № 8. P. 795–803. https://doi.org/10.1038/nbt.2978
  77. 77. Le Page A., Khalil A., Vermette P. et al. The role of elastin-derived peptides in human physiology and diseases // Matrix. Biol. 2019. V. 84. P. 81–96. https://doi.org/10.1016/j.matbio.2019.07.004
  78. 78. Lohr K., Sardana H., Lee S. et al. Extracellular matrix protein lumican regulates inflammation in a mouse model of colitis // Inflamm. Bowel. Dis. 2012. V. 18. № 1. P. 143–151. https://doi.org/10.1002/ibd.21713
  79. 79. Lortat-Jacob H., Esterre P., Grimaud J.A. Interferon-gamma, an anti-fibrogenic cytokine which binds to heparan sulfate // Pathol. Res. Pract. 1994. V. 190. № 9–10. P. 920–922. https://doi.org/10.1016/S0344-0338 (11)80996-9
  80. 80. Lortat-Jacob H., Garrone P., Banchereau J., Grimaud J.A. Human interleukin-4 is a glycosaminoglycan-binding protein // Cytokine. 1997. V. 9. № 2. P. 101–105. https://doi.org/10.1006/cyto.1996.0142
  81. 81. Lu A., Miao M., Schoeb T.R. et al. Blockade of TSP1-dependent TGF-β activity reduces renal injury and proteinuria in a murine model of diabetic nephropathy // Am. J. Pathol. 2011. V. 178. № 6. P. 2573–2586. https://doi.org/10.1016/j.ajpath.2011.02.039
  82. 82. Lyon M., Rushton G., Gallagher J.T. The interaction of the transforming growth factor-betas with heparin/heparan sulfate is isoform-specific // J. Biol. Chem. 1997. V. 272. № 29. P. 18000–18006.
  83. 83. Macri L., Silverstein D., Clark R. Growth factor binding to the pericellular matrix and its importance in tissue engineering // Adv Drug Deliv Rev. 2007. V. 59. № 13. P. 1366–1381. https://doi.org/10.1016/j.addr.2007.08.015
  84. 84. Manou D., Caon I., Bouris P. et al. The complex interplay between extracellular matrix and cells in tissues // The Extracellular Matrix / ed. Vigetti D., Theocharis A.D. New York, NY: Springer New York, 2019. V. 1952. P. 1–20. https://doi.org/10.1007/978-1-4939-9133-4_1
  85. 85. Maruhashi T., Kii I., Saito M., Kudo A. Interaction between periostin and BMP-1 promotes proteolytic activation of lysyl oxidase // J. Biol. Chem. 2010. V. 285. № 17. P. 13294–13303. https://doi.org/10.1074/jbc.M109.088864
  86. 86. Marzeda A.M., Midwood K.S. Internal affairs: tenascin-C as a clinically relevant, endogenous driver of innate immunity // J. Histochem. Cytochem. 2018. V. 66. № 4. P. 289–304. https://doi.org/10.1369/0022155418757443
  87. 87. McCaffrey T.A., Falcone D.J., Du B. Transforming growth factor-β1 is a heparin-binding protein: identification of putative heparin-binding regions and isolation of heparins with varying affinity for TGF-β1 // J. Cell. Physiol. 1992. V. 152. № 2. P. 430–440. https://doi.org/10.1002/jcp.1041520226
  88. 88. McQuitty C.E., Williams R., Chokshi S., Urbani L. Immunomodulatory role of the extracellular matrix within the liver disease microenvironment // Front. Immunol. 2020. V. 11. P. 574276. https://doi.org/10.3389/fimmu.2020.574276
  89. 89. Melrose J. Perlecan, a modular instructive proteoglycan with diverse functional properties // Int. J. Biochem. Cell. Biol. 2020. V. 128. P. 105849. https://doi.org/10.1016/j.biocel.2020.105849
  90. 90. Merceron C., Vinatier C., Portron S. et al. Differential effects of hypoxia on osteochondrogenic potential of human adipose-derived stem cells // Am. J. Physiol. Cell. Physiol. 2010. V. 298. № 2. P. C355–C364. https://doi.org/10.1152/ajpcell.00398.2009
  91. 91. Midwood K.S., Chiquet M., Tucker R.P., Orend G. Tenascin-C at a glance // J. Cell. Sci. 2016. P. jcs.190546. https://doi.org/10.1242/jcs.190546
  92. 92. Milner R., Hung S., Erokwu B. et al. Increased expression of fibronectin and the α5β1 integrin in angiogenic cerebral blood vessels of mice subject to hypobaric hypoxia // Mol. Cell. Neurosci. 2008. V. 38. № 1. P. 43–52. https://doi.org/10.1016/j.mcn.2008.01.013
  93. 93. Mochida Y., Parisuthiman D., Yamauchi M. Biglycan is a positive modulator of BMP-2 induced osteoblast differentiation // Tissue Engineering / ed. Fisher J.P. Boston, MA: Springer US, 2007. V. 585. P. 101–113. https://doi.org/10.1007/978-0-387-34133-0_7.
  94. 94. Monboisse J.C., Oudart J.B., Ramont L. et al. Matrikines from basement membrane collagens: A new anti-cancer strategy // Biochim. Biophys. Acta. 2014. V. 1840. № 8. P. 2589–2598. https://doi.org/10.1016/j.bbagen.2013.12.029
  95. 95. Muller M., Padberg W., Schindler E. et al. Renocortical tissue oxygen pressure measurements in patients undergoing living donor kidney transplantation // Anesth. Analg. 1998. V. 87. № 2. P. 474–476. https://doi.org/10.1097/00000539-199808000-00045
  96. 96. Muñoz-Nájar U.M., Neurath K.M., Vumbaca F., Claffey K.P. Hypoxia stimulates breast carcinoma cell invasion through MT1-MMP and MMP-2 activation // Oncogene. 2006. V. 25. № 16. P. 2379–2392. https://doi.org/10.1038/sj.onc.1209273
  97. 97. Murdamoothoo D., Schwenzer A., Kant J., et al. Investigating cell-type specific functions of tenascin-C // Meth. Cell. Biol. 2018. V. 143. P. 401–428. https://doi.org/10.1016/bs.mcb.2017.08.023
  98. 98. Murphy-Ullrich J.E., Iozzo R.V. Thrombospondins in physiology and disease: New tricks for old dogs // Matrix. Biol. 2012. V. 31. № 3. P. 152–154. https://doi.org/10.1016/j.matbio.2012.01.002
  99. 99. Murphy-Ullrich J.E., Sage E.H. Revisiting the matricellular concept // Matrix. Biol. 2014. V. 37. P. 1–14. https://doi.org/10.1016/j.matbio.2014.07.005
  100. 100. Murphy-Ullrich J.E., Suto M.J. Thrombospondin-1 regulation of latent TGF-β activation: A therapeutic target for fibrotic disease // Matrix. Biol. 2018. V. 68–69. P. 28–43. https://doi.org/10.1016/j.matbio.2017.12.009
  101. 101. Mwale F., Ciobanu I., Giannitsios D. et al. Effect of oxygen levels on proteoglycan synthesis by intervertebral disc cells // Spine. 2011. V. 36. № 2. P. E131–E138. https://doi.org/10.1097/BRS.0b013e3181d52b9e
  102. 102. Novo E., Bocca C., Foglia B. et al. Liver fibrogenesis: un update on established and emerging basic concepts // Arch. Biochem. Biophys. 2020. V. 689. P. 108445. https://doi.org/10.1016/j.abb.2020.108445
  103. 103. Nozaki M. Loss of SPARC-mediated VEGFR-1 suppression after injury reveals a novel antiangiogenic activity of VEGF-A // J. Clin. Invest. 2006. V. 116. № 2. P. 422–429. https://doi.org/10.1172/JCI26316
  104. 104. Okada M., Yamawaki H. A current perspective of canstatin, a fragment of type IV collagen alpha 2 chain // J. Pharm. Sci. 2019. V. 139. № 2. P. 59–64. https://doi.org/10.1016/j.jphs.2018.12.001
  105. 105. Page-McCaw A., Ewald A.J., Werb Z. Matrix metalloproteinases and the regulation of tissue remodelling // Nat. Rev. Mol. Cell. Biol. 2007. V. 8. № 3. P. 221–233. https://doi.org/10.1038/nrm2125
  106. 106. Petrova V., Annicchiarico-Petruzzelli M., Melino G., Amelio I. The hypoxic tumor microenvironment // Oncogenesis. 2018. V. 7. № 1. P. 10. https://doi.org/10.1038/s41389-017-0011-9
  107. 107. Pompili S., Latella G., Gaudio E., Sferra R., Vetuschi A. The charming world of the extracellular matrix: a dynamic and protective network of the intestinal wall // Front. Med. 2021. Vol. 8. P. 610189. https://doi.org/10.3389/fmed.2021.610189
  108. 108. Potts J.R., Campbell I.D. Fibronectin structure and assembly // Curr. Op. Cell. Biol. 1994. V. 6. № 5. P. 648–655. https://doi.org/10.1016/0955-0674 (94)90090-6
  109. 109. Ren H., Li Y., Chen Y., Wang L. Endostatin attenuates PDGF-BB- or TGF-beta1-induced HSCs activation via suppressing RhoA/ROCK1 signal pathways // DDDT. 2019. V. 13. P. 285–290. https://doi.org/10.2147/DDDT.S191617
  110. 110. Ricard-Blum S., Vallet S.D. Fragments generated upon extracellular matrix remodeling: Biological regulators and potential drugs // Matrix. Biol. 2019. V. 75–76. P. 170–189. https://doi.org/10.1016/j.matbio.2017.11.005
  111. 111. Riis S., Stensballe A., Emmersen J. et al. Mass spectrometry analysis of adipose-derived stem cells reveals a significant effect of hypoxia on pathways regulating extracellular matrix // Stem. Cell. Res. Ther. 2016. V. 7. № 1. P. 52. https://doi.org/10.1186/s13287-016-0310-7
  112. 112. Roche W.R., Beasley R., Williams J.H., Holgate S.T. Subepithelial fibrosis in the bronchi of asthmatics // Lancet. 1989. V. 333. № 8637. P. 520–524. https://doi.org/10.1016/S0140-6736 (89)90067-6
  113. 113. Rock M.J., Holden P., Horton W.A., Cohn D.H. Cartilage oligomeric matrix protein promotes cell attachment via two independent mechanisms involving CD47 and αVβ3 integrin // Mol. Cell. Biochem. 2010. V. 338. № 1–2. P. 215–224. https://doi.org/10.1007/s11010-009-0355-3
  114. 114. Rojas-Ríos P., González-Reyes A. Concise Review: The plasticity of stem cell niches: a general property behind tissue homeostasis and repair // Stem. Cells. 2014. V. 32. № 4. P. 852–859. https://doi.org/10.1002/stem.1621
  115. 115. Saed G.M., Diamond M.P. Hypoxia-induced irreversible up-regulation of type I collagen and transforming growth factor-β1 in human peritoneal fibroblasts // Fertil. Steril. 2002. V. 78. № 1. P. 144–147. https://doi.org/10.1016/S0015-0282 (02)03146-1
  116. 116. Sarrazin S., Lamanna W.C., Esko J.D. Heparan Sulfate Proteoglycans // Cold. Spring. Harb. Persp. Biol. 2011. V. 3. № 7. P. a004952–a004952. https://doi.org/10.1101/cshperspect.a004952
  117. 117. Scherberich A., Tucker R.P., Degen M. Tenascin-W is found in malignant mammary tumors, promotes alpha8 integrin-dependent motility and requires p38MAPK activity for BMP-2 and TNF-alpha induced expression in vitro // Oncogene. 2005. V. 24. № 9. P. 1525–1532. https://doi.org/10.1038/sj.onc.1208342
  118. 118. Schiemann B.J., Neil J.R., Schiemann W.P. SPARC inhibits epithelial cell proliferation in part through stimulation of the transforming growth factor-β–signaling system // MBoC. 2003. Vol. 14. № 10. P. 3977–3988. https://doi.org/10.1091/mbc.e03-01-0001
  119. 119. Schofield R. The relationship between the spleen colony-forming cell and the haemopoietic stem cell // Blood Cells. 1978. V. 4. № 1–2. P. 7–25.
  120. 120. Schönherr E., Hausser H.J. Extracellular Matrix and cytokines: a functional unit // Dev. Immunol. 2000. V. 7. № 2–4. P. 89–101. https://doi.org/10.1155/2000/31748
  121. 121. Schultz G.S., Wysocki A. Interactions between extracellular matrix and growth factors in wound healing // Wound. Rep. Regen. 2009. V. 17. № 2. P. 153–162. https://doi.org/10.1111/j.1524-475X.2009.00466.x
  122. 122. Schultz-Cherry S., Murphy-Ullrich J.E. Thrombospondin causes activation of latent transforming growth factor beta secreted by endothelial cells by a novel mechanism // J. Cell. Biol. 1993. V. 122. № 4. P. 923–932. https://doi.org/10.1083/jcb.122.4.923
  123. 123. Schultz-Cherry S., Ribeiro S., Gentry L., Murphy-Ullrich J.E. Thrombospondin binds and activates the small and large forms of latent transforming growth factor-beta in a chemically defined system // J. Biol. Chem. 1994. V. 269. № 43. P. 26775–26782.
  124. 124. Seitz H.K., Bataller R., Cortez-Pinto H. Alcoholic liver disease // Nat. Rev. Dis. Primers. 2018. V. 4. № 1. P. 16. https://doi.org/10.1038/s41572-018-0014-7
  125. 125. Semenza G.L. Hypoxia-inducible factors in physiology and medicine // Cell. 2012. V. 148. № 3. P. 399–408. https://doi.org/10.1016/j.cell.2012.01.021
  126. 126. Sengle G., Charbonneau N.L., Ono R.N. et al. Targeting of bone morphogenetic protein growth factor complexes to fibrillin // J. Biol. Chem. 2008. V. 283. № 20. P. 13874–13888. https://doi.org/10.1074/jbc.M707820200
  127. 127. Sengle G., Tsutsui K., Keene D.R. et al. Microenvironmental regulation by fibrillin-1 // PLoS. Genet. 2012. V. 8. № 1. P. e1002425. https://doi.org/10.1371/journal.pgen.1002425
  128. 128. Sivaraman K., Shanthi C. Matrikines for therapeutic and biomedical applications // Life. Sci. 2018. V. 214. P. 22–33. https://doi.org/10.1016/j.lfs.2018.10.056
  129. 129. Smalling R.V., Delker D.A., Zhang Y. et al. Genome-wide transcriptome analysis identifies novel gene signatures implicated in human chronic liver disease // Am. J. Physiol. Gastrointestinal. Liver. Physiol. 2013. V. 305. № 5. P. G364–G374. https://doi.org/10.1152/ajpgi.00077.2013
  130. 130. Sorushanova A., Delgado L.M., Wu Z. et al. The collagen suprafamily: from biosynthesis to advanced biomaterial development // Adv. Mater. 2019. V. 31. № 1. P. 1801651. https://doi.org/10.1002/adma.201801651
  131. 131. Spencer J.A., Ferraro F., Roussakis E. et al. Direct measurement of local oxygen concentration in the bone marrow of live animals // Nature. 2014. V. 508. № 7495. P. 269–273. https://doi.org/10.1038/nature13034
  132. 132. Spenlé C., Loustau T., Murdamoothoo D. et al. Tenascin-C orchestrates an immune-suppressive tumor microenvironment in oral squamous cell carcinoma // Cancer. Immunol. Res. 2020. V. 8. № 9. P. 1122–1138. https://doi.org/10.1158/2326-6066.CIR-20-0074
  133. 133. Theocharis A.D., Skandalis S.S., Gialeli C., Karamanos N.K. Extracellular matrix structure // Adv. Drug. Deliv. Rev. 2016. V. 97. P. 4–27. https://doi.org/10.1016/j.addr.2015.11.001
  134. 134. Theocharis A., Gialeli C., Hascall V., Karamanos N.K. 1.1 Extracellular matrix: a functional scaffold // Extracellular Matrix: Pathobiology and Signaling / ed. Karamanos N. DE GRUYTER, 2012. P. 3–20. https://doi.org/10.1515/9783110258776.3
  135. 135. Tucker R.P., Drabikowski K., Hess J.F. et al. Phylogenetic analysis of the tenascin gene family: evidence of origin early in the chordate lineage // BMC. Evol. Biol. 2006. V. 6. P. 60. https://doi.org/10.1186/1471-2148-6-60
  136. 136. Tucker R.P., Degen M. The Expression and possible functions of tenascin-W during development and disease // Front. Cell Dev. Biol. 2019. V. 7. P. 53. https://doi.org/10.3389/fcell.2019.00053
  137. 137. Tufvesson E., Westergren-Thorsson G. Tumour necrosis factor-α interacts with biglycan and decorin // FEBS. Letters. 2002. V. 530. № 1–3. P. 124–128. https://doi.org/10.1016/S0014-5793 (02)03439-7
  138. 138. Vaday G.G., Lider O. Extracellular matrix moieties, cytokines, and enzymes: dynamic effects on immune cell behavior and inflammation // J. Leukocyte. Biol. 2000. V. 67. № 2. P. 149–159. https://doi.org/10.1002/jlb.67.2.149
  139. 139. Vial C., Gutiérrez J., Santander C., et al. Decorin interacts with connective tissue growth factor (CTGF)/CCN2 by LRR12 inhibiting its biological activity // J. Biol. Chem. 2011. V. 286. № 27. P. 24242–24252 https://doi.org/10.1074/jbc.M110.189365
  140. 140. Vigetti D., Viola M., Karousou E., et al. Epigenetics in extracellular matrix remodeling and hyaluronan metabolism // FEBS. J. 2014. V. 281. № 22. P. 4980–4992. https://doi.org/10.1111/febs.12938
  141. 141. Vogel V. Unraveling the Mechanobiology of Extracellular Matrix // Annu. Rev. Physiol. 2018. V. 80. № 1. P. 353–387. https://doi.org/10.1146/annurev-physiol-021317-121312
  142. 142. Volkmer E., Kallukalam B.C., Maertz J., et al. Hypoxic preconditioning of human mesenchymal stem cells overcomes hypoxia-induced inhibition of osteogenic differentiation // Tis. Eng. Part. A. 2010. V. 16. № 1. P. 153–164. https://doi.org/10.1089/ten.tea.2009.0021
  143. 143. Watt F.M., Huck W.T.S. Role of the extracellular matrix in regulating stem cell fate // Nat. Rev. Mol. Cell. Biol. 2013. Vol. 14. № 8. P. 467–473. https://doi.org/10.1038/nrm3620
  144. 144. Wells J.M., Gaggar A., Blalock J.E. MMP generated matrikines // Matrix. Biol. 2015. V. 44–46. P. 122–129. https://doi.org/10.1016/j.matbio.2015.01.016
  145. 145. Wight T.N., Kang I., Merrilees M.J. Versican and the control of inflammation // Matrix. Biol. 2014. V. 35. P. 152–161. https://doi.org/10.1016/j.matbio.2014.01.015
  146. 146. Wohl A.P., Troilo H., Collins R.F., et al. Extracellular regulation of bone morphogenetic protein activity by the microfibril component fibrillin-1 // J. Biol. Chem. 2016. V. 291. № 24. P. 12732–12746. https://doi.org/10.1074/jbc.M115.704734
  147. 147. Woodruff P.G., Modrek B., Choy D.F., et al. t-helper type 2–driven inflammation defines major subphenotypes of asthma // Am. J. Respir. Crit. Care. Med. 2009. V. 180. № 5. P. 388–395. https://doi.org/10.1164/rccm.200903-0392OC
  148. 148. Wu M.H., Urban J.P.G., Cui Z.F., et al. Effect of extracellular pH on matrix synthesis by chondrocytes in 3D agarose gel // Biotechnol. Prog. 2007. V. 23. № 2. P. 430–434. https://doi.org/10.1021/bp060024v
  149. 149. Xu J.C., Xiao M.F., Jakovcevski I., et al. The extracellular matrix glycoprotein tenascin-R regulates neurogenesis during development and in the adult dentate gyrus of mice // J. Cell. Sci. 2013. P. jcs.137612. https://doi.org/10.1242/jcs.137612
  150. 150. Yang D.C., Yang M.H., Tsai C.C., et al. Hypoxia inhibits osteogenesis in human mesenchymal stem cells through direct regulation of RUNX2 by TWIST // PLoS. ONE. 2011. V. 6. № 9. P. e23965. https://doi.org/10.1371/journal.pone.0023965
  151. 151. Zollinger A.J., Smith M.L. Fibronectin, the extracellular glue // Matrix. Biol. 2017. V. 60–61. P. 27–37. https://doi.org/10.31857/S004137712010003X
QR
Перевести

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Высшая аттестационная комиссия

При Министерстве образования и науки Российской Федерации

Scopus

Научная электронная библиотека